
Coverage for ISO/IEC 8652:2012 and subsequent corrections in ACATS 3.x and 4.x
Clauses 5.4 – 5.5.2

Objective's Submitted tests

Clause Para. Lines Kind Subkind Notes Tests New Priority Objective Text Objective notes (will need work).

5.4 (1) Redundant

(2/3) Syntax

(3) Syntax

(4/3) 1 NameRes All

C540002 All

Negative 4

2

2 C87B43A (int operators) 3

Negative 3

(5/3) 1 Legality Any legal case statement will test this.

Negative 3 Check that non-static discrete choices are illegal.

A Key to Kinds and subkinds is found on the sheet named Key. Tests new to ACATS 3.0 are shown in bold; ACATS 3.1 in bold italic; ACATS 4.0 in blue bold; ACATS 4.1 in blue bold italic. ACATS 4.2 in green bold italic.

Case expression rules are tested in
4.5.7; we don't need to test them here.

C540001 (integer, formal
integer, formal derived
integer, formal derived
enum), C54A03A (ints,
enums), C54A04A (type
with partial views),
C540002 (modular, formal
modular, int, formal int,
enum)

Check that the selecting_expression can be of any discrete
type

C-Test. Formal discrete would work,
but no static choices can be written,
which makes it pointless to test.

This objective should have been tested
in a legacy test named C87B43x,
(based on the Implementors Guide
including it as one of 4 objectives under
8.7(B), T43) but no such test exists.
(C87B43A tests the 4th of the 4
objectives).

Check that the selecting_expression of a case statement can
be resolved if it is an overloaded function call, of which exactly
one has a discrete type.

B54A05A (String, private),
B54A05B (Fixed)

Check that the selecting_expression cannot be of a non-
discrete type

B-Test. Check record types, array
types, task types, protected types,
access types, and float types. Also
generic private types (even if actual is
discrete).

B54A60A (Ints, Enums),
B54A60B (Character literal)

Check that the selecting_expression has to resolve to a single
solution (it cannot be two overloaded discrete functions).

B-Test. Try cases involving modular
types.

Check that the choices of a case statement can be resolved if
it involves an overloaded function call.

C-Test. Need to try enumeration
literals, and modular operators. If we
ever add user-defined static functions,
then we need to revisit the priority of
this objective and include such cases
(especially for enumerations).

B54A10A (Different integer
types), B54A20A (Boolean
vs. Integer)

Check that the discrete_choices must be of the type of the
selecting_expression.

B-Test. Need test for overloaded
enumerations, and for modular types.

B54A21A (Integer,
Boolean)

B-Test. Need test for user-defined
enumerations, modular types, and in
generics.

2 Redundant B54A01L B-Test.

(6/3) Legality Subpart Lead-in for following.

(7/4) Legality

Negative All

Negative B540001 All

Negative All

Negative B540001 All

(8/3) Legality 3

Negative 5

(9/3) Legality Many case statements will try this. C54A13D (Ints, Enums) 3

3

Negative All

This normatively stated in 3.8.1(8/3).
But we test it here for case statements.

Check that others must appear alone and last in a case
statement.

Widely
Used

The majority of case expressions will
test this.

B54A12A (Integer),
B54A25A (Enumerations),
B540002 (Modular)

If the selecting expression of a case statement is a name with
a static nominal subtype, then no discrete_choice can cover
any value outside of the range of the subtype.

AI12-0071-1 slightly changes the
wording but makes no material change
to the semantics.

If the selecting expression of a case statement is a name with
a static nominal subtype with a static predicate, then no
discrete_choice can cover any value that does not satisfy its
predicates.

B54B01C (Formal In,
Integer), B54B04A
(Objects, Integer, Boolean),
B54B06A (Enum literal,
Enums), B540002
(Modular)

If the selecting expression of a case statement is a name with
a static nominal subtype and no predicates, and there is no
others choice, then every value of the range of the subtype
must be covered by some discrete_choice.

AI12-0071-1 slightly changes the
wording but makes no material change
to the semantics.

If the selecting expression of a case statement is a name with
a static nominal subtype and has a static predicate, and there
is no others choice, then every value that satisfies the
predicates of the subtype must be covered by some
discrete_choice.

C540001 (formal integer,
formal derived integer,
formal derived enum)

Check that a case statement with an others clause and a
selecting_expression with type selecting_expression is
root_integer, universal_integer, or a descendant of a formal
scalar type works as expected.

C-Test. Need test for root integer and
universal integer.

Check that a case statement with a selecting_expression with
type selecting_expression is root_integer, universal_integer, or
a descendant of a formal scalar type is illegal if there is no
others choice.

B-Test. The old Ada 95 coverage
document lists this as Nothing New,
but this rule was not in Ada 83. There
are a couple of cases like this in the
ancient tests, but they don't try this
directly. Try to cover the entire range
from System.Min_Int to
System.Max_Int, others still required.

Widely
Used

If the selecting_expression of a case statement is an
expression, then any value of the base range of the type may
appear as a choice.

C-Test. Try cases involving modular
types.

C54A13A (Vars, Ints),
C54A13B (Generic in or in
out, Ints), C54A13C
(Qualified, Type
Conversion, Ints)

If the selecting_expression of a case statement is a name with
a non-static subtype, then any value of the base range of the
type may appear as a choice.

C-Test. Try cases involving modular
types.

B54B02B (Integer, Enums),
B54B05A (Ints), B540002
(Modular)

If the selecting_expression of a case statement is an
expression, and there is no others choice, then every value of
the base range of the type must be covered by some discrete
choice.

All

(10) Legality All

(11/3) Dynamic Any case statement will test this.

(12/3) Dynamic Any case statement will test this. 3 Check that the correct case alternative is selected.

Check that null choices can occur in case statements.

(13) Dynamic C540003 All

(14) NonNormative A note.

(15) NonNormative Examples

(16) NonNormative

(17) NonNormative

(18) NonNormative

5.5 (1) Redundant

(2) Syntax

(3/3) Syntax

(4) Syntax

(5) Syntax This is really a Legality Rule. 3

B55A01A 3

B54B02B (Objects, Integer,
Enums), B54B02C
(Generic in), B54B02D
(Generic in out), B54B04B
(Objects, Integer, Enums),
B540002 (Modular)

If the selecting_expression of a case statement is a name with
a non-static subtype, and there is no others choice, then every
value of the base range of the type must be covered by some
discrete choice.

B54A20A (Integer,
Character), B540002
(Modular)

Check that two discrete_choices of a case_statement may not
cover the same value.

Widely
Used

Widely
Used

C54A42A, C54A42B
(compact range), C54A42C
(wide range), C54A42D
(wide range), C54A42E
(biased small range),
C54A42F (wide range,
others), C54A42G (ranges,
others), C540003 (ignored
predicates, others)

These tests try to ensure that both
jump table and repeated if
implementations are needed and
tested. C-Test: Try case statements
with modular types.

C54A24A (Ints), C54A24B
(Chars)

This follows from 3.8.1 rules. It's weird
enough that the existing test objectives
need to be preserved.

Other than the case of static
predicates, this should only happen for
invalid values, which we can't generate
on demand, so other cases aren't
testable.

If the selecting expression of a case statement is a name with
a static nominal subtype and has a static predicate, the case
statement does not have an others clause, and the static
predicate is disabled, then Constraint_Error is raised if the
value of the selecting expression does not satisfy the
predicate.

C57004A (Normal for
loops), C57004B (Normal
for loops)

If a loop_statement has a loop_statement_identifier that
matches the one on the end loop, the loop properly executes.

C-Test. Need tests for unconditional
and while loops as well as new forms
of loop.

If a loop_statement does not have a loop_statement_identifier,
there cannot be an identifier following end loop.

B-Test. We still need tests for the new
kinds of loops.

Negative B55A01A 3

(6/5) Definitions B55B12B

C55B11A

(7) Dynamic 4

(8) Dynamic

(9/4) 1 Dynamic Portion

2 Dynamic C55B04A (Integer) 3

3 Dynamic C55B04A (Integer) 3

4 Dynamic Portion Tested below.

5 Dynamic 3

C550001 All

3

C550001 All

If a loop_statement has a loop_statement_identifier, then the
loop is illegal if there is no identifier after end loop, or one that
is different.

B-Test. We still need tests for the new
kinds of loops.

“loop parameter” and its subtype.
Clarified by AI12-0061-1, post-
Corrigendum, not not really changed.

Check that the subtype of a loop parameter is determined
properly by using it in a case statement.

Check that the type of a loop parameter is determined properly
by assigning it.

This is probably common, but it ought
to be explicitly tested somewhere.

Check that a loop without an iteration scheme executes until it
is left by a transfer of control.

C-Test. Unlikely to be wrong, but no
tests can be found. Try all forms of
control flow (exit, goto, exception).

C55C02A (false
conditions), C55C02B
(evaluation)

Check that a while loop condition is evaluated each time
through the loop, and loop is complete if the condition is False.

The next sentence provides testable
information.

Check that the discrete_subtype_definition is evaluated at the
start of a for loop.

C-Test. This should be tried for other
types (at least enumeration and
modular, also generic formal discrete,
integer, and modular, possibly also
character types and Boolean). Low
priority because it's unlikely to be
wrong.

Check that if the discrete subtype of a for loop identifies a null
range, the loop body is not executed.

C-Test. This should be tried for other
types (at least enumeration and
modular, also generic formal discrete,
integer, and modular, possibly also
character types and Boolean). Low
priority because it's unlikely to be
wrong.

C55B03A (Integer),
C450001 (Modular, only
number of iterations)

Check that the loop parameter is assigned values in
ascending order for a normal for loop and the loop body is
executed once for each value when the subtype does not have
a predicate.

C-Test. This should be tried for other
types (at least enumeration and
modular, also generic formal discrete,
integer, and modular, possibly also
character types and Boolean). Low
priority because it's unlikely to be
wrong.

AI12-0071-1 slightly changes the
wording but makes no material change
to the semantics.

Check that the loop parameter is assigned only values that
satisfy the predicate, in ascending order for a normal for loop
and the loop body is executed once for each value when the
subtype has a static predicate.

C55B03A (Integer),
C450001 (Modular, only
number of iterations)

Check that the loop parameter is assigned values in
descending order for a reverse for loop and the loop body is
executed once for each value when the subtype does not have
a predicate.

C-Test. This should be tried for other
types (at least enumeration and
modular, also generic formal discrete,
integer, and modular, possibly also
character types and Boolean). Low
priority because it's unlikely to be
wrong.

AI12-0071-1 slightly changes the
wording but makes no material change
to the semantics.

Check that the loop parameter is assigned only values that
satisfy the predicate, in descending order for a reverse for loop
and the loop body is executed once for each value when the
subtype has a static predicate.

6 Dynamic Portion Tested above.

(9.1/3) Redundant Just a pointer to the following sections.

(10) NonNormative A note.

(11) NonNormative Another note.

(12) NonNormative Another note.

(13) NonNormative Part of the previous note.

(14) NonNormative Start of examples

(15) NonNormative

(16) NonNormative

(17) NonNormative

(18) NonNormative

(19) NonNormative

(20) NonNormative

(21) NonNormative End of examples.

5.5.1

(1/3) StaticSem Subpart Lead-in for the package.

(2/3) StaticSem Portion

(3/3) StaticSem Portion

(4/3) StaticSem Portion

(5/3) StaticSem Portion

(6/3) 1 Definitions “iterator type”

2 “reversible iterator type”

3 “iterator object”

4 “reversible iterator object”

5 “iteration cursor subtype”

(7/3) StaticSem B551001 All

B551002 All

We don't directly test the contents of
this (or any) package, but we will test
it's use in other rules.

Check that a Default_Iterator aspect cannot be specified on an
untagged type nor on a type that does not have one of the
indexing aspects.

Check that a Iterator_Element aspect cannot be specified on
an untagged type nor on a type that does not have one of the
indexing aspects.

(8/3) 1 StaticSem B551001 All

B551001 All

B551001 All

B551001 All

B551001 All

B551001 All

B551001 Part 5

2 Definitions “default iterator function”

3 Definitions “default iterator subtype”

4 Definitions “default cursor subtype”

(9/3) 1 StaticSem B551002 All

2 Definitions “default element subtype”

(10/3) StaticSem 6

(11/3) 1 Definitions “iterable container type”

2 Definitions “reversible iterable container type”

3 Definitions “iterable container object”

4 Definitions “reversible iterable container object”

(11.1/4) StaticSem Subpart

(12/3) Legality Portion Lead-in for following.

(13/3) Legality Subpart Correct containers will test

Negative 6

(14/3) Legality Subpart Correct containers will test

Negative 6

Check that name of a Default_Iterator aspect cannot denote
an entity other than a function declared in the same
declaration list as the type declaration.

Check that the name specified by a Default_Iterator aspect
cannot denote a function with zero parameters.

Check that the name specified by a Default_Iterator aspect
cannot denote a function whose first parameter has a type
other than T or T'Class or an access-to-object designating T or
T'Class.

Check that the name specified by a Default_Iterator aspect
cannot denote a function whose other parameters are not
defaulted.

Check that the name specified by a Default_Iterator aspect
cannot denote a function whose result type is other than an
iterator type.

Check that the name specified by a Default_Iterator aspect
cannot denote multiple functions that meet all of these
requirements.

Check that the name specified by a Default_Iterator aspect
can denote a function whose parameters beyond the first are
defaulted, and that the result can be used in an iterator.

C-Test. Existing test tries the
declaration, we also need to test it in a
loop.

Check that name of a Iterator_Element aspect cannot denote
an entity other than a subtype.

Check that aspects Default_Iterator and Iterator_Element are
inherited by descendants of a type for which it is specified.

C-Test: check that container iterators
work on such a type. We can't test
these separately.

Added by AI12-0138-1. The rules are
enumerated in 13.1.1(18.2-5/4).

Check that an iterable container type T is illegal if there is no
Constant_Indexing function whose result type is covered by
the default element type of T or is a reference type designating
a type covered by the default element type of T.

B-Test. Careful: No Constant_Indexing
at all is legal.

Check that an iterable container type T is illegal if there is no
Constant_Indexing function whose second parameter covered
the default cursor type of T.

B-Test. Careful: No Constant_Indexing
at all is legal.

(15/3) Legality 4

Negative 6

Negative 6 B-Test.

5

(16/3) Definitions “default constant indexing function”

(17/3) Legality Portion Lead-in for following.

(18/3) Legality Subpart Correct containers will test

Negative 6

(19/3) Legality Subpart Correct containers will test

Negative 6

(20/3) Legality 4

Negative 6

Negative 6 B-Test.

C552A02 All The Bingo_Balls foundation tests this.

(21/3) Definitions “default variable indexing function”

5.5.2 (1/3) General

(2/5) Syntax Generalized by AI12-0156-1.

(2.1/5) Syntax Added by AI12-0156-1.

(3/3) 1 NameRes 5 C-Test.

5 C-Test.

B552A02 All

Check that an iterable container type T is legal and can be
used if the only matching Constant_Indexing function has
more than two parameters where all of the extra parameters
have defaults.

C-Test. Check that the order that the
values are defined in the predicate is
immaterial.

Check that an iterable container type T is illegal if all
Constant_Indexing functions have 3 or more parameters
without defaults.

B-Test. Careful: No Constant_Indexing
at all is legal.

Check that an iterable container type T is illegal if there are
more than one Constant_Indexing function that matches the
rules for the default constant indexing function of T.

Check that an iterable container type is legal even if
Constant_Indexing is not specified.

C-Test. Try in an iterator. In this case,
Variable_Indexing must be specified.

Check that an iterable container type T is illegal if there is no
Variable_Indexing function whose result type is a reference
type designating a type covered by the default element type of
T.

B-Test. Careful: No Variable_Indexing
at all is legal.

Check that an iterable container type T is illegal if there is no
Variable_Indexing function whose second parameter covers
the default cursor type of T.

B-Test. Careful: No Variable_Indexing
at all is legal.

Check that an iterable container type T is legal and can be
used if the only matching Variable_Indexing function has more
than two parameters where all of the extra parameters have
defaults.

C-Test. Check that the order that the
values are defined in the predicate is
immaterial.

Check that an iterable container type T is illegal if there is all
Variable_Indexing functions have 3 or more parameters
without defaults.

B-Test. Careful: No Variable_Indexing
at all is legal.

Check that an iterable container type T is illegal if there are
more than one Variable_Indexing function that matches the
rules for the default variable indexing function of T.

Check that an iterable container type is legal even if
Variable_Indexing is not specified.

Check that the iterator_name of a generalized iterator can be
of any iterator type.

Check that the iterator name of a generalized iterator can be
resolved if it is an overloaded function call, of which exactly
one has an iterator type.

We cannot check a “not a type”
objective here, as this the same syntax
as a normal for loop.

Check that the iterator_name of a generalized iterator cannot
be of a non-iterator type.

2 NameRes 5 C-Test.

5

B552A02 All

B552A02 All

3 Definitions

(4/3) 1 Definitions “reverse iterator”, “forward iterator”

2 Legality B552A01, C552A01 All

Negative B552A01 All

3 Legality B552A01, C552A02 All

B552A01 All

(5/5) 1 Legality Subpart

Negative 1

1

2 Legality Subpart

1

Negative B552001 All

1

3 Legality Subkind

Check that the iterable_name of an iterator can be of any
array or iterable container type.

Check that the iterable_name of an iterator can be resolved if
it is an overloaded function call, of which exactly one has an
array or iterable container type.

C-Test. Try at least one case of each
kind of type.

Check that the iterable_name of an iterator cannot be of a
type that is neither an array nor an iterable container type.

Check that the iterable_name of an iterator cannot denote a
type.

“array component iterator”, “container
element iterator”

Check that “reverse” can be used in a generalized iterator if
the type of the iterator_name is a reversible iterator type.

Check that “reverse” cannot be used in a generalized iterator if
the type of the iterator_name is not a reversible iterator type.

Check that “reverse” can be used in a container element
iterator if the default iterator type of the type of the
iterable_name is a reversible iterator type.

Check that “reverse” cannot be used in a container element
iterator if the default iterator type of the type of the
iterable_name is not a reversible iterator type.

Added by AI12-0156-1. Any legal
generalized iterator with a subtype
indication will test.

Check that a generalized iterator is illegal if there is a
subtype_indication, and it does not statically match the
iteration cursor subtype.

B-Test. Added by Amendment 1, so
ultra low priority until that comes out.

Check that a generalized iterator is illegal if there is an
access_definition.

B-Test. This is never legal, as the
actual type for a generic parameter
cannot be anonymous. Added by
Amendment 1, so ultra low priority until
that comes out.

Any legal array component iterator with
a subtype indication will test.

Check that an array component iterator can have an
access_definition that statically matches the component
subtype of the type of the iterable_name.

C-Test. Added by Amendment 1, so
ultra low priority until that comes out.
Then medium priority; this is the case
that could happen. We don't seem to
have any other place to put this test.

Changed to static matching by AI12-
0151-1.

Check that an array component iterator is illegal if there is a
subtype_indication, and it does not statically match the
component subtype of the type of the iterable_name.

Check that an array component iterator is illegal if there is an
access_definition, and it does not statically match the
component subtype of the type of the iterable_name.

B-Test. Added by Amendment 1, so
ultra low priority until that comes out.

Any legal container element iterator
with a subtype_indication will test.

1

Negative B552A04 All

1

(6/3) Legality Subkind

Negative B552A04 All

(6.1/4) Legality Rule added by AI12-0047-1. B552A05 All

B552A04 All

B552001 All

(6.2/4) Legality Rule added by AI12-0120-1. B552A04 Part 4

(6.3/4) 1 Legality Rule added by AI12-0120-1. B552A05 All

2 B552A04 All

(7/5) 1 Definitions “loop parameter”

Check that a container element iterator is illegal if there is an
access_definition, and it does not statically match the default
element subtype of the type of the iterable_name.

C-Test. Added by Amendment 1, so
ultra low priority until that comes out.
Then still low priority; this requires a
custom, non-generic container type
with anonymous access element. We
don't seem to have a natural place to
put this test.

Changed to static matching by AI12-
0151-1.

Check that a container element iterator is illegal if there is a
subtype_indication, and it does not statically match the default
element subtype of the type of the iterable_name.

Check that a container element iterator is illegal if there is an
access_definition, and it does not statically match the default
element subtype of the type of the iterable_name.

B-Test. Added by Amendment 1, so
ultra low priority until that comes out.
(And never very likely even then.)

Any legal container element iterator on
a constant will test.

Check that a container element iterator is illegal if the
iterable_name is a constant of type T, and Constant_Indexing
is not specified for T.

If Variable_Indexing is not specified for
an iterable container type, then
Constant_Indexing must be, else
Default_Iterator would be illegal as the
type would not be indexable. As such,
the second part of this rule is
untestable (and is redundant).

Check that the iterator_name of a generalized iterator does
not denote a subcomponent that depends on discriminants of
an object whose nominal subtype is unconstrained and which
is not known to be constrained.

Check that the iterable_name of a container element iterator
does not denote a subcomponent that depends on
discriminants of an object whose nominal subtype is
unconstrained and which is not known to be constrained.

Check that the iterable_name of an array component iterator
does not denote a subcomponent that depends on
discriminants of an object whose nominal subtype is
unconstrained and which is not known to be constrained.

Check that a container element iterator loop is illegal if the call
to the default element iterator is illegal.

B-Test: Other cases: Try an error in a
default expression; and possibly an
accessibility problem with the container
object (if someone can figure out how
to do that).

Check that a generalized iterator loop is illegal if the cursor
type is limited at the point of the loop.

Check that a container element iterator loop is illegal if the
default cursor subtype is limited at the point of the loop.

2 StaticSem 1

6

6

2 StaticSem 3

4 StaticSem 6

5 StaticSem 6

(8/3) 1 StaticSem B552A03 All

2 StaticSem C552001 All

B552A03 All

3 StaticSem C552A02 All

B552A03 All

B552A03 All

From AI12-0093-1, AARM 5.5.2(8.a/4). 4

From AI12-0093-1, AARM 5.5.2(8.a/4). 4

Check that the nominal subtype of the loop parameter for a
generalized iterator is the named subtype when one is given.

C-Test. Added by Amendment 1, so
ultra-low priority until that comes out,
then Low priority as testing this
requires using the loop parameter as a
case selecting expression and thus a
discrete cursor type. That is not a very
likely usage, thus this test will not be
very usage-oriented.

Check that the nominal subtype of the loop parameter of an
array component iterator is the named subtype when one is
given.

C-Test. Make the array component a
discrete type and use it in a case
selecting expression.

Check that the nominal subtype of the loop parameter of a
container element iterator is the named subtype when one is
given.

C-Test. Make the container element a
discrete type and use it in a case
selecting expression.

Check that the nominal subtype of the loop parameter for a
generalized iterator is the iteration cursor subtype if no
subtype name is given.

C-Test. Low priority as testing this
requires using the loop parameter as a
case selecting expression and thus a
discrete cursor type. That is not a very
likely usage, thus this test will not be
very usage-oriented.

Check that the nominal subtype of the loop parameter of an
array component iterator is the subtype of the array
component if no subtype name is given in the iterator.

C-Test. Make the array component a
discrete type and use it in a case
selecting expression.

Check that the nominal subtype of the loop parameter of a
component element iterator is the subtype of the container
element if no subtype name is given in the iterator.

C-Test. Make the container element a
discrete type and use it in a case
selecting expression.

Check that the loop parameter of a generalized iterator cannot
be assigned.

Check that the loop parameter of an array component iterator
can be assigned if the array object is a variable view.

Would be nice to try more component
types than just Integer.

Check that the loop parameter of an array component iterator
cannot be assigned if the array object is a constant view.

Check that the loop parameter of a component element
iterator can be assigned if the container object is a variable
view and the Variable_Indexing aspect has been specified for
the type of the container object.

Check that the loop parameter of a component element
iterator cannot be assigned if the container object is a constant
view.

Check that the loop parameter of a component element
iterator cannot be assigned if the type of the container object
does not have Variable_Indexing specified.

Check that the loop parameter of a generalized iterator is
finalized when the loop is left.

C-Test. Careful: it also will be finalized
when it is assigned for each iteration of
the loop. Controlled cursors are pretty
weird, so we give this a lower priority
(as the test will not be very usage-
oriented).

Check that the loop parameter of an array component iterator
is not finalized when the loop is left or when it iterates.

C-Test. The components should only
be finalized when the array object goes
away (and as part of assignments to
them).

From AI12-0093-1. 4

(9/3) Dynamic 4

(10/3) 1 Dynamic C552A01 All

2 Dynamic Subpart Tested on line 5.

3 Dynamic Subpart Tested on line 5.

4 Dynamic Subpart Tested on line 5.

5 Dynamic C552A01 All

C552A01 Part 3

C552A01 All

C552A01 All

6 Dynamic C552A01 All

C552A01 Part 3

C552A01 All

C552A01 All

Check that the loop parameter of a component element
iterator is not finalized when the loop is left or when it iterates.

C-Test. The elements should only be
finalized when the array object goes
away (and as part of assignments to
them).

Check that the iterator specification is elaborated before the
loop executes.

C-Test. Make sure that it is elaborated
only once per loop (not per iteration).
Careful about the static matching
requirement for the subtype_indication.
Try all three kinds of loops.

Check that the iterator_name of a generalized iterator is
evaluated exactly once at the start of the loop.

Check that the execution of a forward generalized iterator calls
First initially, then Next until Has_Element returns False
(assuming no transfer of control), executing the sequence of
statements each time.

Check that the execution of a forward generalized iterator calls
First initially, then Next until the loop is left by a transfer of
control, executing the sequence of statements each time.

C-Test. Test tries unconditional exit on
first iteration, we should also try
conditionally exiting on a later iteration,
exiting via goto, and exiting via an
exception. None of these are likely to
be wrong if the test passes, so we give
them a low priority. Could use the
foundation to construct such a test.

Check that the execution of a forward generalized iterator for a
reversible iterator type never calls Last or Previous.

Check that the execution of a forward generalized iterator
never iterates or calls Next if Has_Element is initially False.

Check that the execution of a reverse generalized iterator calls
Last initially, then Previous until Has_Element returns False
(assuming no transfer of control), executing the sequence of
statements each time.

Check that the execution of a reverse generalized iterator calls
Last initially, then Previous until the loop is left by a transfer of
control, executing the sequence of statements each time.

C-Test. Test tries unconditional exit on
first iteration, we should also try
conditionally exiting on a later iteration,
exiting via goto, and exiting via an
exception. None of these are likely to
be wrong if the test passes, so we give
them a low priority. Could use the
foundation to construct such a test.

Check that the execution of a reverse generalized iterator
never calls First or Next.

Check that the execution of a reverse generalized iterator
never iterates or calls Previous if Has_Element is initially
False.

5

5

4

(11/3) 1 Dynamic C552001 All

2 Dynamic C552001 All

3 Dynamic Subpart Tested on line 4 and 5.

4 Dynamic Subpart C552001 All

C552001 All

C552002 All

C552001 All

5 Dynamic Subpart C552001 All

C552001 All

C552002 All

C552001 All

6 Dynamic Subpart Tested above.

(12/3) 1 Dynamic C552A02 All

2 Dynamic C552A02 All

3 Dynamic 4

From AI12-0093-1, AARM
5.5.2(10.a/4).

If the cursor subtype is indefinite, Constraint_Error is raised by
a generalized iterator if Next or Previous returns an object with
a different constraint than the initial value.

C-Test. This is somewhat of a
pathology, but we may want to test it as
some people may try to misuse
iterators this way.

From AI12-0093-1, AARM
5.5.2(10.a/4).

If the cursor subtype is class-wide, Constraint_Error is raised
by a generalized iterator if Next or Previous returns an object
with a different tag than the initial value.

C-Test. This is somewhat of a
pathology, but we may want to test it as
some people may try to misuse
iterators this way.

From AI12-0093-1, AARM
5.5.2(10.b/4).

If the cursor subtype of an iterator type is limited, any attempt
to use the iterator type in a generalized iterator is illegal.

B-Test. This is definitely a pathology,
but some detection is necessary.

Check that the iterable_name of an array component iterator
is evaluated exactly once at the start of the loop.

Check that the execution of an array component iterator is
immediately complete if the array is a null array.

Check that a forward array component iterator visits each
component of a one-dimensional array exactly once, in the
order of index values (first to last).

Would be nice to try more component
types than just Integer.

Check that a forward array component iterator for a two-
dimensional array visits each component in canonical order,
with the last dimension varying fastest.

Would be nice to try more component
types than just Integer.

Check that a forward array component iterator for a two-
dimensional array with convention Fortran visits each
component in canonical order, with the first dimension varying
fastest.

We could check dynamic and
parameter cases here, but hardly worth
it.

Check that a forward array component iterator properly visits
elements for more than two dimensional arrays.

We could check dynamic and
parameter cases here, but hardly worth
it.

Check that a reverse array component iterator visits each
component of a one-dimensional array exactly once, in the
reverse order of index values (last to first).

Would be nice to try more component
types than just Integer.

Check that a reverse array component iterator for a two-
dimensional array visits each component in canonical order,
with the last dimension varying fastest.

Would be nice to try more component
types than just Integer.

Check that a reverse array component iterator for a two-
dimensional array with convention Fortran visits each
component in canonical order, with the first dimension varying
fastest.

We could check dynamic and
parameter cases here, but hardly worth
it.

Check that a reverse array component iterator properly visits
elements for more than two dimensional arrays.

We could check dynamic and
parameter cases here, but hardly worth
it.

Check that the iterable_name of a container element iterator is
evaluated exactly once at the start of the loop.

Check that the default iterator function is evaluated for a
container element iterator exactly once at the start of the loop
and after the iterable name.

Check that a object of the default cursor subtype is created
and initialized appropriately at the start of a container element
iterator.

C-Test. But testing requires a weird
cursor type with a controlled part, and
is tough to test well. So a low priority.

(13/3) 1 Dynamic Subpart Tested on line 4 and 5.

2 Dynamic Subpart Tested on line 4 and 5.

3 Dynamic Subpart Tested on line 4 and 5.

4 Dynamic C552A02 All

C552A02 Part 3

C552A02 All

C552A02 All

5 Dynamic C552A02 All

C552A02 Part 3

C552A02 All

C552A02 All

6 Dynamic C552A02 All

C552A02 Part 4

C552A02 All

Check that the execution of a forward container element
iterator calls First initially, then Next until Has_Element returns
False (assuming no transfer of control), executing the
sequence of statements each time.

Check that the execution of a forward container element
iterator calls First initially, then Next until the loop is left by a
transfer of control, executing the sequence of statements each
time.

C-Test. Test tries unconditional exit on
first iteration, we should also try
conditionally exiting on a later iteration,
exiting via goto, and exiting via an
exception. None of these are likely to
be wrong if the test passes, so we give
them a low priority. Could use the
foundation to construct such a test.

Check that the execution of a forward container element
iterator never calls Last or Previous.

Check that the execution of a forward container element
iterator never iterates or calls Next if Has_Element is initially
False.

Check that the execution of a reverse container element
iterator calls Last initially, then Previous until Has_Element
returns False (assuming no transfer of control), executing the
sequence of statements each time.

Check that the execution of a reverse container element
iterator calls Last initially, then Previous until the loop is left by
a transfer of control, executing the sequence of statements
each time.

C-Test. Test tries unconditional exit on
first iteration, we should also try
conditionally exiting on a later iteration,
exiting via goto, and exiting via an
exception. None of these are likely to
be wrong if the test passes, so we give
them a low priority. Could use the
foundation to construct such a test.

Check that the execution of a reverse container element
iterator never calls Last or Previous.

Check that the execution of a reverse container element
iterator never iterates or calls Previous if Has_Element is
initially False.

Check that the loop parameter of a container element iterator
denotes the default variable indexing using the current cursor
of the container if the container object is a variable view and
the Variable_Indexing aspect was specified for the container
type.

Check that the loop parameter of a container element iterator
denotes the default constant indexing using the current cursor
of the container if the container object is a constant view or the
Variable_Indexing aspect was not specified for the container
type.

C-Test: still need to check the case of
a container type that doesn't have
Variable_Indexing.

Check that the default variable indexing of the container type
is evaluated once per iteration of the loop for a container
element iterator when the container is a variable view and the
Variable_Indexing aspect was specified for the container type.

C552A02 Part 4

(14/4) Dynamic Added by AI12-0120-1 4 C-Test.

4 C-Test.

(15/3) NonNormative

(16/3) NonNormative A reference to other examples.

Check that the default constant indexing of the container type
is evaluated once per iteration of the loop for a container
element iterator when the container is a constant view or the
Variable_Indexing aspect was not specified for the container
type.

C-Test: still need to check the case of
a container type that doesn't have
Variable_Indexing.

Check that an exception propagated by a call or assignment
executed as part of a container element iterator cannot be
handled inside of the sequence_of_statements of the loop, but
can be handled outside of the loop.

Check that an exception propagated by a call or assignment
executed as part of a generalized iterator cannot be handled
inside of the sequence_of_statements of the loop, but can be
handled outside of the loop.

An example. Paragraph number
changed by AI12-0120-1.

Paragraphs: Objectives with tests: Total objectives:

4 82 99 64 139 0

Must be tested Objectives with Priority 10 0

Objectives with Priority 9 0

Important to test Objectives with Priority 8 0

Objectives with Priority 7 0

Valuable to test Objectives with Priority 6 13

Objectives with Priority 5 9

Ought to be tested Objectives with Priority 4 15

Objectives with Priority 3 19

Worth testing Objectives with Priority 2 1

Not worth testing Objectives with Priority 1 7

Total: 64

78

Completely: 70

Objectives
to test:

Objectives with
submitted tests:

Objectives covered by new
tests since ACATS 2.6

	Objectives

