
Coverage for ISO/IEC 8652:2012 and subsequent corrections in ACATS 3.x and 4.x
Clauses 3.9.3 – 3.10.1

Objective's Submitted tests

Clause Para. Lines Kind Subkind Notes Tests New Priority Objective Text Objective notes (will need work).

3.9.3 (1/2) Redundant

(1.1/3) Syntax

(1.2/2) 1 StaticSem Subpart

2 StaticSem Subpart

3 StaticSem 7

(2/2) Legality Subpart Other abstract type tests will check this.

Negative B393002 (record type). 5 Check that an untagged type cannot be declared abstract.

(3/2) 1 Definitions "abstract subprogram"

2 Legality Subpart Abstract type C-Tests will test this.

Negative 5

(4/2) Legality Portion

Negative This is a change from Ada 95. C393013 All

A Key to Kinds and subkinds is found on the sheet named Key. Tests new to ACATS 3.0 are shown in bold; ACATS 3.1 in bold italic; ACATS 4.0 in blue bold; ACATS 4.1 in blue bold italic. ACATS 4.2 in green bold italic.

Moved from 6.1 by the Amendment.
Aspect_clauses added for Ada 2012.

Will be checked as part of other tests
(especially legality rules).

Will be checked as part of other tests
(especially legality rules).

Check that a class-wide type of an abstract type is not itself
abstract.

C-Test. Try declaring objects of such
types via object declarations and
allocators; try declaring functions
returning such types. [Some existing
tests have objectives that appear to
cover this, but they don't]

B-Tests. Try deriving abstract integer,
record, private, etc. types. Also, create
a test like B393002 for private types
and private extensions (this is a syntax
test - giving "abstract" requires
"tagged") - probably belongs in 7.3,
though. For some reason, ACATS 2.6
has similar tests for records and
generic formals, but not regular private
types.

B393001 (only two
examples), B393005
(Example of AARM
3.9.3(3.b)).

Check that an explicitly declared abstract subprogram cannot
be primitive for a specific non-abstract tagged type.

B-Test. Try tagged records and type
extensions as well as private
extensions. Try routines that are
primitive because of parameters other
than the first, primitive because of
return types, primitive because of
access parameters, or have multiple
controlling parameters.

This is the lead-in for the following two
rules:

Check that a non-abstract function with a controlling result of
type T is inherited as non-abstract and does not require
overriding for a null extension of T.

From AI05-0068-1. B393011 All

(5/2) Legality 7

B393008 All

4 B-Test: Check that it cannot be called.

(6/2) 1-2 Legality 7

B393005 (third objective).

B393008 All

C393013 All

All

3 Legality

(7) Legality Subpart

4

7

Check that an abstract routine of an abstract partial view
overridden by a non-abstract routine in the private part
requires overriding when it is inherited if the private part is not
visible where it is inherited.

Check that an inherited abstract subprogram remains abstract
for a tagged abstract derived type.

B-Test: Check both abstract record
extensions and interfaces. All we can
do here is check that there is no error.
Combine with first objective for
3.9.3(6/2).

B393005 (as part of third
objective).

Check that an inherited non-abstract function with a controlling
result is abstract for a tagged abstract derived type with a non-
null extension.

Note: We're checking that there is no
error here; this is really not testable on
its own.

Check that an inherited non-abstract function with a controlling
access result is abstract for a tagged abstract derived type.

Note: We're checking that there is no
error here; this is really not testable on
its own.

Check that an inherited abstract subprogram remains abstract
for an untagged derived type.

Check that an inherited abstract subprogram requires
overriding for a tagged non-abstract derived type.

B-Test. We have instance cases, but
not ordinary ones.

Check that an inherited non-abstract function with a controlling
result requires overriding for a tagged non-abstract derived
type with a non-null extension.

Check that an inherited non-abstract function with a controlling
access result requires overriding for a tagged non-abstract
derived type.

For a private extension of type T, check that an inherited non-
abstract function with a controlling result does not require
overriding if the full type is a null extension of T.

B393006 (revised to
cover new cases)

Check that, if a non-abstract type is derived from an abstract
formal private type with the generic declaration, an
instantiation is rejected if primitive subprograms that require
overriding are inherited by the derived type from the actual
(parent) type and they are not overridden.

Any C-Test using abstract types will
check this.

Check that it is illegal to call a non-dispatching abstract
subprogram.

B-Test. Try calling abstract primitive
subprograms of untagged types; and
non-primitive subprograms of tagged
types. The latter case is not very
important. Note that untagged abstract
subprograms cannot be resolved, and
other overloadings will get priority. Also
see 6.4(8/2).

Check that it is illegal to make a call to an abstract
subprogram that is not dispatching.

B-Test. Only calls that are dynamically-
tagged are legal; try statically tagged,
tag-indeterminate where the tag is
statically determined elsewhere, and
tag-indeterminate where the tag
defaults to the current one. Try
ordinary tagged abstract types and
interface types.

(8/3) 1 Legality Part 4 Check that the type of an aggregate cannot be abstract.

All Check that the type of an allocator cannot be abstract.

All

BC51012, BC51013 6

2 Legality All

3 Legality All Check that the type of a component cannot be abstract.

4 Legality All

5 Legality Added by AI05-0073-1. 8

6 Legality Added by AI05-0203-1. 7

7 Legality Added by AI05-0073-1. 6

6

(9) 1 Legality B393001

2 Legality 5

(10) 1 Legality All

2 Legality B393007

Added by AI05-0073-1. 7

(11/2) 1 Legality B393004

B393009 (interfaces)

B-Test. Try ordinary abstract types
(B393001 includes this in its objective,
but not in the actual test cases).

B393001, B393009

B393001, B393003,
B393009

Check that the type of an object declaration cannot be
abstract.

Check that the type of a generic formal object of mode in
cannot be abstract

B-Test. Try interface types, generic
formal interface types, and "ordinary"
abstract types (the existing tests only
check generic abstract formals).

B393003, B393009
Check that the type of the target of an assignment statement
cannot be abstract.

B393001, B393009

B393001, B393005
(second objective, although
this appears to be a
mistake), B393009

Check that the result type of a non-abstract function cannot be
abstract.

Check that the designated type of an access result type of a
non-abstract function cannot be abstract.

B-Test. Try interface types and
"ordinary" abstract types, as well as
generic formal versions of them.

Check that the type denoted by a return_subtype_indication
cannot be abstract.

B-Test. Try interface types and
"ordinary" abstract types, as well as
generic formal versions of them.

Check that the result type of a generic function cannot be
abstract.

B-Test. Try interface types and
"ordinary" abstract types, as well as
generic formal versions of them.

Check that the designated type of an access result type of a
generic function cannot be abstract.

B-Test. Try interface types and
"ordinary" abstract types, as well as
generic formal versions of them.

Check that the full type of an non-abstract partial view cannot
be abstract.

If a generic formal type is abstract, check that for each
primitive subprogram of the formal that is not abstract, the
corresponding primitive subprogram of the actual type shall
not be abstract.

B-Test. Seems to be missing a test in
ACATS 2.x, another case where one
line but not the other of a rule was
tested.

B393007, B393010

Check that abstract primitive subprograms for an abstract type
declared in a visible part are not allowed in the private part
(unless they are overriding an inherited subprogram).

Check that primitive functions with controlling results for a
tagged type declared in a visible part are not allowed in the
private part (unless they are overriding an inherited
subprogram).

No need for interfaces: all primitive
functions have to be abstract and are
tested by the objective for line 1.

Check that primitive functions with controlling access results
for a tagged type declared in a visible part are not allowed in
the private part (unless they are overriding an inherited
subprogram).

B-Test. Test "regular" abstract types.
(No need for interfaces: all primitive
functions need to be abstract and thus
are covered by the objective for line 1).

Check that a generic actual subprogram cannot be abstract
unless the formal is a formal abstract subprogram.

We don't need to test the formal
abstract subprogram case here; most
C-Tests for that feature will check it.

2 Legality 5

(11.1/2) Dynamic

(12) NonNormative A note.

(13) NonNormative Another note.

(14) NonNormative Start of an example...

(15) NonNormative

(16) NonNormative ...end of the example.

3.9.4 (1/2) Redundant

(2/2) Syntax

(3/2) Syntax

(4/2) StaticSem Subpart

(5/2) Definitions "Limited interface", etc.

(6/2) 1 Redundant

2 Definitions "Synchonized tagged type"

(7/2) StaticSem C394001 All

C394001 All

CXC7005 All

(8/2) Redundant

(9/2) 1 Definitions "Progenitor type" and subtype

2 StaticSem Part 8

(10/2) Legality Subpart Any interface C-Test will test.

Negative B394001 All

Check that the prefix of the Access, Unchecked_Access, or
Address attributes cannot be an abstract subprogram.

B-Test. Seems to be missing a test in
ACATS 2.x, another case where one
line but not the other of a rule was
tested.

Not
Testable

Can't test "no effect", because we'd
have guess some incorrect effect to
look for, which is impractical.

Any test that uses an interface type in a
tagged type context, tests that it is
abstract, etc.

Check that an object of a task interface type can be the prefix
of the Terminated and Callable attributes.

Check that an object of a task interface type can be passed to
an abort statement.

Check that an object of a task interface type can be the prefix
of the Identity attribute.

Not
Testable

This can't be tested for protected types,
because there are no operations of
protected types/objects that can be
used outside of the protected type
(P'Priority can only be used within the
type).

C394002 (limited,
simple); C394003
(nonlim, simple)

Check that an interface inherits primitive subprograms from
each progenitor.

C-Test. Verify by trying to call such
inherited routines. Try each kind of
interface. Try routines that are primitive
because of parameters other than the
first, primitive because of return types,
primitive because of controlling access
parameters, or have multiple
controlling parameters.

CY30017 (task,
simple), CY30018
(protected,
simple), CY30019
(sync, simple),
CY30031 (task,
simple), CY30011
(nonlim, access)

Check that a primitive subprogram of an interface type cannot
be a subprogram that is neither an abstract subprogram nor a
null procedure.

(11/2) Legality Subpart Any interface C-Test will test.

Negative B394A01 All

(12/2) Legality Subpart

Negative B394A02 All

(13/2) Legality B394A03 All

(14/2) Legality B394A04 All

(15/2) Legality B394A05 All

(16/2) Legality B394A03 All

(17/2) Legality Subpart

(18/3) Dynamic

(19/2) NonNormative A note.

(20/2) NonNormative Start of examples...

(21/2) NonNormative

(22/2) NonNormative

(23/2) NonNormative

(24/2) NonNormative

(25/2) NonNormative

(26/2) NonNormative

(27/2) NonNormative

(28/2) NonNormative

(29/2) NonNormative

(30/2) NonNormative

(31/2) NonNormative

(32/2) NonNormative

(33/2) NonNormative

(34/2) NonNormative

(35/2) NonNormative

(36/2) NonNormative ...end of examples.

3.10 (1) 1 Definitions "designates", "access value"

2 General

(2/2) Syntax

(3) Syntax

Check that the subtype named in an interface list must denote
an interface.

Any non-limited interface C-Test will
test.

Check that a descendant of a non-limited interface cannot be
limited.

Check that a type derived from a task interface must be either
a task interface, task type, or a private extension.

Check that a type derived from a protected interface must be
either a protected interface, protected type, or a private
extension.

Check that a type derived from a synchronized interface must
be one of a task, protected, or synchronized interface,
protected type, task type, or a private extension.

Check that a private extension cannot be derived from both a
task interface and a protected interface.

The recheck in an instance boilerplate.
The tests for the previous rules should
cover this one.

Not
Testable

Can't test "no effect", because we'd
have guess some incorrect effect to
look for, which is impractical. Wording
changed by AI05-0070-1, but not the
semantics.

(4) Syntax

(5) Syntax

(5.1/2) Syntax

(6/2) Syntax

(7/1) 1 Definitions

2 Definitions "storage pool"

3 StaticSem C3A0015

4 StaticSem A general description of storage pools.

(8) Definitions

(9/3) 1 StaticSem B3A0001

B3A0001

Negative B3A0001

B3A0001

Added by AI05-0142-4. 5 Either B or C-Test.

Negative Added by AI05-0142-4. 5

Added by AI05-0277-1. 5 Either B or C-Test.

Negative Added by AI05-0277-1. 5 B-Test.

2 StaticSem B3A0001

B3A0001

Negative B3A0001

3 StaticSem B3A0001, C3A0013

4 Either B or C-Test.

6

5 Either B or C-Test. Try generic cases.

"access-to-object", "access-to-
subprogram"

Check that a derived access type has the same storage pool
as its parent.

Not
Testable

"pool-specific" and "general" access
types

"aliased view". We use Obj'Access in
the test objectives to check the aliased
definition (and no more).

Check that a reference Obj'Access is legal if Obj is declared
by an aliased object_declaration or aliased
component_declaration.

Check that a reference Obj'Access is legal if Obj denotes a
renaming of an aliased view.

Check that a reference Obj'Access is illegal if Obj is declared
by an object_declaration or component_declaration that is not
aliased.

Check that a reference Obj'Access is illegal if Obj denotes a
renaming of an object that is not an aliased view.

Check that a reference Obj'Access is legal if Obj denotes an
explicitly aliased parameter.

Check that a reference Obj'Access is illegal if Obj denotes a
non-aliased parameter of an untagged type.

B-Test. Possibly covered in existing
tests.

Check that a reference Obj'Access is legal if Obj denotes an
aliased (extended) return object.

Check that a reference Obj'Access is illegal if Obj denotes a
non-aliased (extended) return object.

Check that a reference Obj'Access is legal if Obj is a
dereference of an access-to-object value.

Check that a reference Obj'Access is legal if Obj is a view
conversion of an aliased view.

Check that a reference Obj'Access is illegal if Obj is a value
conversion, even if it is of an aliased view.

Text changed to use "immutably
limited" by approved AI05-0053-1.

Check that a reference Obj'Access is legal if Obj designates
the current instance of a limited tagged type, or a type with the
reserved word limited in its full definition.

Check that a reference Obj'Access is legal if Obj designates
the current instance of a task type or a protected type.

Check that a reference Obj'Access is legal if Obj designates
the current instance of a type that is immutably limited
because it has an immutably limited component.

Either B or C-Test. New from AI05-
0053-1.

Check that a reference Obj'Access is legal if Obj designates
the current instance of a type that is immutably limited for
some other reason.

7

Negative B3A0001 3

7

4 Definitions B3A0001, C3A0013 4

B3A0001 4

Negative B3A0001 Check that a reference Obj'Access is illegal if Obj is a slice.

5 Redundant

6 Deleted C3A0014

(10) 1 Definitions "designated subtype"

2 StaticSem

3 StaticSem "access-to-constant type"

4 Definitions "access-to-variable type"

B3A0001

C3A0016 All

5 StaticSem

(11) 1 Definitions "designated profile"

2 Definitions "calling convention"

3 StaticSem 5

5

Check that a reference Obj'Access is legal if Obj designates a
return object whose type is immutably limited.

Either B or C-Test. New from AI05-
0053-1. (This is inside of an
extended_return_statement.)

Check that a reference Obj'Access is illegal if Obj designates
the current instance of a non-immutably limited type.

B-Test: Nonlimited types and types
that are implicitly limited are covered.
Other cases??

Check that a reference Obj'Access is illegal if Obj designates
a return object whose type is not immutably limited.

B-Test. (This is inside of an
extended_return_statement.)

Check that a reference Obj'Access is legal if Obj designates a
formal parameter or generic formal object of a tagged type.

Either B or C-Test. Test generic formal
objects.

Check that a reference Obj'Access is illegal if Obj designates
a formal parameter or generic formal object of an untagged
type.

B-Test: should try generic formal
objects.

The restriction was deleted by
Amendment 1; we test it to ensure that
compilers have made the needed
changes.

Check that if the view defined by an object declaration is
aliased, has discriminants, and its nominal subtype is
unconstrained, then the object is unconstrained.

Widely
Used

Any access-to-object test
tests this.

Widely
Used

Any general access-to-object type uses
this definition.

B3A0001 (assignment),
B3A0003 (assignment in
generics), B641001 (in out
params)

Check that a dereference of an access-to-constant type is a
constant.

Widely
Used

Check that an access-to-variable type cannot designate a
constant.

Note: Type conversions will be tested
in 4.6, renames in 8.5.1.

Check that a constant value of an access-to-variable type can
be used to modify the designated object.

Widely
Used

Any pool-specific access-to-object type
uses this definition.

Any Ada 83 access type
test!

Widely
Used

Any access-to-subprogram
test tests this.

Check that the calling convention of an ordinary access-to-
subprogram type is Ada by default.

B-Test: try to give a subprogram with
the wrong convention. This could be
tested with 'Access, and will require
some sort of substitution to provide an
appropriate convention.

Check that the calling convention of a protected access-to-
subprogram type is "protected" by default.

B-Test: try to give a subprogram with
the wrong convention. This could be
tested with 'Access (of an ordinary
subprogram). We also could test a
similar case to the previous.

6

(12/2) 1 Definitions "anonymous access"

2 Definitions "designated subtype"

"anonymous access-to-variable type"

B3A0005 Part 4

B3A0006 All

3 Definitions "designated profile" C3A0017, C3A0018 Part 4

(13/2) 1 Definitions

2 Redundant

3 StaticSem

4 StaticSem

(13.1/2) 1 Definitions

2 Definitions Subpart Test as part of testing paragraph 15/2.

3 Definitions Subpart Test as part of testing paragraph 15/2.

These don't really go here, but since
they combine a number of general
clauses (3.10, 4.1, 6.4) they make the
most sense here.

C3A0001 (functions),
C3A0002 (procedures),
C3A0003 (functions in
generics), C3A0004,
C3A0005, C3A0006, &
C3A0007 (in data
structures), C3A0008 &
C3A0009 (passed as
parameters), C3A0010
(procedures in generics),
C3A0011 (procedures in
child), C3A0012 (procedure
subunit).

Check that a dereference of a named access-to-subprogram
can be called and has the appropriate profile. Check that an
object of an access-to-subprogram type can designate
multiple subprograms.

C-Test: check cases like these for
named access-to-protected
subprograms. (Surely like C3A0001
and C3A0002.)

Widely
Used

Any anonymous access
test tests this.

Widely
Used

Widely
Used

"access-to-constant type" - we test this
carefully because it is new. The rules
checked are really defined elsewhere,
but testing it here means that other
uses don't need to test all
combinations.

Check that a dereference of an anonymous access-to-
constant type is a constant.

C-Test: We should try that a
dereference of an access-to-constant
can be read at runtime. Low priority
because it's unlikely to get wrong.

Check that an anonymous access-to-variable type cannot
designate a constant.

Check that an anonymous access type can be an access-to-
subprogram type, and that it can be called with an appropriate
profile.

C-Test: access-to-protected
subprogram; try in generics, especially
with formal objects. Also try access-to-
procedure calls (C3A0017 does not
have any procedures, C3A0018 does
have one). Also, try functions returning
access-to-function returning access-to-
function, and similar messy
compositions.

Widely
Used

"null". Can't get much more widely
used than this.

Tests C3A0025, C3A0026, C3A0027
try null for anonymous access types
(which is new in Ada 2005).

Widely
Used

Sources of access-to-object values.
Seems like it should be redundant.

Widely
Used

Sources of access-to-subprogram
values. Seems like it should be
redundant.

Widely
Used

"excludes null", tests for the legality and
checking of null-excluding types will
check this.

Negative C3A0030

Negative

(14/1) 1 Redundant

2 StaticSem 3

5

4

5

6

3

5

Check that an access discriminant only is null excluding when
a null exclusion is given.

C460013, C3A0030
Check that a non-controlling access parameter is only null
excluding when a null exclusion is explicitly given.

The existing tests each try one such
case (a normal subprogram call), but
it's hard to imagine a truly different
case.

B38003A (ordinary types
and subtypes); B38003B
(formal types); B38008B
(doubly constrained
subtypes)

Check that a constrained access subtype designating an array
cannot have an index constraint.

B-Test. Check named general access
types.

B38003A (ordinary types
and subtypes); B38003B
(formal types); B38008B
(doubly constrained
subtypes)

Check that a constrained access subtype designating a
discriminanted type cannot have a discriminant constraint.

B-Test. Check named general access
types. Check discriminanted protected
and task types, and private types.

B38008A (ordinary types
and subtypes, range and
accuracy constraints),
B38009A (ordinary access-
to-access types, index and
discriminant constraints),
B38009D (formal access-
to-access types, index and
discriminant constraints)

Check that an access subtype designating an elementary type
cannot have any constraint.

B-Test. Check named general access
types. Check formal access types with
range constraints.

Check that an access-to-subprogram subtype cannot have
any constraint.

B-Test. Check access-to-protected-
subprogram as well.

Check that an access_definition cannot include an index
constraint or discriminant constraint.

B-Test. Try this on unconstrained
arrays and discriminated records that
would otherwise be legal. Note that this
is disallowed by the syntax, thus this is
only a medium-priority test; but we still
test it because it is an obvious mistake
to make (using subtype_indication
instead of subtype_mark in the
grammar).

C38002A (ordinary
access), C38002B (formal
access)

Check that a unconstrained access-to-array subtype can be
given an index constraint.

C-Test. Check named general access
types.

C38002A (ordinary
access), C38002B (formal
access)

Check that an unconstrained access-to-discriminanted
subtype can be given a discriminant constraint.

C-Test. Check record types (both
tagged and untagged), private types,
private extensions, protected types,
and task types. Also check named
general and pool-specific access
types.

(14.1/2) Legality All

All

All

All

6

All

Negative All

C3A0019 (general
access-to-object),
C3A0022 (pool-specific
access-to-object),
C3A0028 (access-to-
subprogram), C3A0029
(access-to-protected-
subprogram)

Check that a null_exclusion can be given in a
subtype_indication if the subtype_mark is an access subtype
that does not exclude null.

C-Test: Try access-to-subprogram
types, access-to-protected subprogram
types. Possibly combine with
3.10(15/2) objectives.

C3A0019 (general
access-to-object),
C3A0022 (pool-specific
access-to-object),
C3A0028 (access-to-
subprogram), C3A0029
(access-to-protected-
subprogram)

Check that a null_exclusion can be given in a
discriminant_specification if the subtype_mark is an access
subtype that does not exclude null.

C3A0019 (general
access-to-object),
C3A0022 (pool-specific
access-to-object),
C3A0028 (access-to-
subprogram), C3A0029
(access-to-protected-
subprogram)

Check that a null_exclusion can be given in a
parameter_specification if the subtype_mark is an access
subtype that does not exclude null.

C3A0019 (general
access-to-object),
C3A0022 (pool-specific
access-to-object),
C3A0028 (access-to-
subprogram), C3A0029
(access-to-protected-
subprogram)

Check that a null_exclusion can be given in a
parameter_and_result_profile if the subtype_mark is an
access subtype that does not exclude null.

Check that a null_exclusion can be given in a
object_renaming_declaration if the subtype_mark is an access
subtype that does not exclude null.

C-Test. Possibly combine with 8.5.1
objectives. Test pool-specific, named
general, anonymous access-to-object,
named access-to-subprogram, named
access-to-protected-subprogram,
anonymous access-to-subprogram,
anonymous access-to-protected-
subprogram

C3A0019 (general
access-to-object),
C3A0022 (pool-specific
access-to-object),
C3A0028 (access-to-
subprogram), C3A0029
(access-to-protected-
subprogram)

Check that a null_exclusion can be given in a
formal_object_declaration if the subtype_mark is an access
subtype that does not exclude null.

B3A0007 (normal
source), B3A0008
(generic formal source)

Check that a null_exclusion cannot be given in a
subtype_indication if the subtype mark is not an access type
or if it excludes null.

Negative All

Negative All

Negative All

Negative All

Negative All

(15/2) 1 Dynamic The check is defined by 3.2.2(11-12). 7

7

2

3 7

7

B3A0007 (normal
source), B3A0008
(generic formal source)

Check that a null_exclusion cannot be given in a
discriminant_specification if the subtype mark is not an access
type or if it excludes null.

B3A0007 (normal
source), B3A0008
(generic formal source)

Check that a null_exclusion cannot be given in a
parameter_specification if the subtype mark is not an access
type or if it excludes null.

B3A0007 (normal
source), B3A0008
(generic formal source)

Check that a null_exclusion cannot be given in a
parameter_and_result_profile if the subtype mark is not an
access type or if it excludes null.

B3A0007 (normal
source), B3A0008
(generic formal source)

Check that a null_exclusion cannot be given in a
object_renaming_declaration if the subtype mark is not an
access type or if it excludes null.

B3A0007 (normal
source), B3A0008
(generic formal source)

Check that a null_exclusion cannot be given in a
formal_object_declaration if the subtype mark is not an access
type or if it excludes null.

Check that Constraint_Error is raised if an index constraint is
not compatible with an unconstrained access-to-array subtype.

C-Test. Be sure to check named pool-
specific access and general access
types. (Anonymous types cannot be
named, so they can't occur in a
subtype_indication.)

Check that Constraint_Error is raised if a discriminant
constraint is not compatible with an unconstrained access-to-
discriminanted subtype.

C-Test. Be sure to check named pool-
specific access and general access
types. Also check record types (both
tagged and untagged), private types,
private extensions, protected types,
and task types as the designated
subtype. (This last part could be a
foundation.)

Not
Testable

This is checked by legality rules, so it
shouldn't be possible for this to fail at
runtime.

The "satisfies" relationship is used by
memberships and type conversions.

Check that Constraint_Error is raised when an access object
does not satisfy the index constraint of the target type of a
conversion.

C-Test. Be sure to check anonymous
access, pool-specific access, and
general access types. Use an implicit
conversion to check anonymous
cases.

In theory, this should be tested at type
conversions; but it makes more sense
to do it here rather than to test a
hundred rules in one place.

Check that Constraint_Error is raised when an access object
does not satisfy the discriminant constraint of the target type of
a conversion.

C-Test. Be sure to check anonymous
access, pool-specific access, and
general access types. Use an implicit
conversion to check anonymous
cases.

4 Part 4

C3A0025 All

Part 5

All

(16) Dynamic 5

(17) Dynamic

(18) NonNormative A note.

(19) NonNormative Another note.

(20) NonNormative A third note.

(21) NonNormative Start of examples...

(22/2) NonNormative

(23) NonNormative

C3A0019 (named
general access-to-
object, null exclusion
given at point of use),
C3A0020 (null excluding
subtype of a named
general access-to-
object), C3A0021 (null
excluding named
general access-to-object
type), C3A20022 (pool-
specific access-to-
object, null exclusion
given at point of use),
C3A0023 (null excluding
subtype of pool-specific
access-to-object),
C3A0024 (null-excluding
pool-specific access-to-
object type)

Check that Constraint_Error is raised when a null access
value is converted to a null excluding subtype of a named
access-to-object type.

C-Test. Check derived pool-specific
access and derived named general
access. Try objects, components
(array, record), discriminants,
parameters, return subtypes, and
formal objects. Base on existing tests.

Check that Constraint_Error is raised when a null access
value is converted to a null excluding anonymous access-to-
object type.

C3A0028 (named
access-to-subprogram,
null exclusion given at
point of use), C3A0029
(named access-to-
protected-subprogram,
null exclusion given at
point of use)

Check that Constraint_Error is raised when a null access
value is converted to a null excluding subtype of a named
access-to-subprogram type.

C-Test. Check subtype of named
access-to-subprogram, null excluding
named access-to-subprogram type,
subtype of named access-to-protected-
subprogram, named null excluding
access-to-protected subprogram type,
and derived named access-to-
protected-subprogram. Try objects,
components (array, record),
discriminants, parameters, return
subtypes, and formal objects.

C3A0026 (normal
subprogram), C3A0027
(protected subprogram)

Check that Constraint_Error is raised when a null access
value is converted to a null excluding anonymous access-to-
subprogram type.

Check that the subtype_indication of an access-to-object type
definition is elaborated.

C-Test. Make sure that any
compatibility checks are made, and
any dynamic parts are evaluated.

Not
Testable

The creation of a subtype does not
have a dynamic effect, the elaboration
of the subtype_mark has no dynamic
effect, and we can't test for no effect.

(24) NonNormative

(25) NonNormative

(26) NonNormative ...end of examples.

3.10.1 (1) General

(2/2) Syntax

(2.1/2) 1 Definitions Subpart

2 Definitions Subpart

3 Redundant

(2.2/2) StaticSem Lead-in

(2.3/2) StaticSem Subpart

(2.4/3) StaticSem Subpart

(2.5/3) StaticSem Subpart

(2.6/3) StaticSem Subpart

(2.7/3) StaticSem Subpart

(3/3) 1 Legality Any incomplete type would test.

B3A1003 Part 4

Negative B3A1001, B3A1002 All

B3A1003 All

B3A1003 All

2 Legality 7

"incomplete view". Tested as part of the
following legality rules. (The
"unconstrained" part is tested as part of
paragraph 6.)

"tagged incomplete view". Tested as
part of the following legality rules.

The normative rule is now given in
7.5(6.1/3), changed by AI05-0178-1.
Test is there.

Tested as part of the following legality
rules.

Tested as part of the following legality
rules. (This occurs from limited withs).

Tested as part of the following legality
rules. Modified by AI05-0208-1. This is
thought to just make the wording
compatible with existing practice.

Tested as part of the following legality
rules. Modified by AI05-0162-1.

Tested as part of the following legality
rules. Modified by AI05-0162-1 and
AI05-0208-1.

Widely
Used

AI05-0162-1 allows incomplete types to
be completed by private types.

Check that an incomplete type can be completed by a private
type declaration or a private extension.

C-Test. We only test this because it is
a change; the B-Test checks that it is
allowed, so we have a low priority to
test that it actually works.

Check that an incomplete type is illegal if there is no full type
that completes it.

Check that an incomplete type cannot be completed by
another incomplete type declaration.

Check that an incomplete type cannot be completed by a
subtype declaration.

This is listed as "redundant" in the
AARM, but the note 3.10.2(3.b) makes
it clear that there is nothing redundant
about the package rule.

Check that an incomplete type given in the visible part of a
package can be completed in the same visible part.

C-Test: Try packages and generic
packages; try tagged incomplete and
regular incomplete types. Try to
combine this test with other objectives.

Negative B3A1001, B3A1002 All

Negative B3A1001, B3A1002 All

3 Legality 6

(4/3) 1 Legality Subpart

Negative B3A1004 All

3

Allowed by AI05-0162-1. 5

2 Legality 4

Negative 4

3 5

5 C-Test. Try tagged incomplete types.

4

(5/2) Legality Portion This is the lead-in for other rules.

Check that an incomplete type given in the visible part of a
package cannot be completed in the private part or body of the
package.

This is a normal completion rule (and is
really redundant), but we'll test it here
since it makes sense to be complete
here.

Check that an incomplete type given in a declarative part or
package cannot be completed in a more nested declarative
part or package.

"Taft amendment types". This is also
redundant, but since the semantics are
special, we'll test it explicitly here.

C38108A, C38108B,
C38108C (all normal
incomplete, normal
package, comp. in body),
C38108D (normal
incomplete, normal
package, comp in body
subunit)

Check that an incomplete type given in the private part of a
package can be completed in that private part or in the
package body.

C-Test: Try packages and generic
packages; try tagged incomplete and
regular incomplete types. Try to
combine this test with other objectives.

Tested as part of any tagged
incomplete type test.

Check that a tagged incomplete type cannot be completed by
an untagged type.

C3A1002 (with
discriminants)

Check that a normal incomplete type can be completed by a
tagged type.

C-Test. Try tagged types that do not
have discriminants. Try to combine this
objective with another.

Check that an incomplete type can be (directly) completed by
a private type.

C-Test. Try both tagged and untagged
types.

C38104A (normal
incomplete)

Check that an incomplete type can have a known discriminant
part.

C-Test. Try tagged incomplete types.
Try to combine this objective with
objectives (it's not worth testing by
itself).

B38103A, B38103B,
B38103C, B38103D,
B38103E

Check that an incomplete type with a known discriminant part
is illegal if the full type does not have a fully conforming
discriminant part.

B-Test. Try tagged incomplete types.
Copying B38103A (perhaps with a few
cases from B38103C) would be
enough. Try private types.

Technically redundant, but probably
wouldn't be tested elsewhere.

C3A1001 (normal
incomplete, untagged
records and PTs),
C3A1002 (normal
incomplete, tagged records
and tasks)

Check that an incomplete type with unknown discriminants
can be completed by any type, including a type that has
discriminants.

C-Test. Try tagged incomplete and
regular incomplete types. Try
completing with unconstrained array
types, and various definite types, as
well as private types.

C3A1001 (normal
incomplete, untagged
records and PTs),
C3A1002 (normal
incomplete, tagged records
and tasks)

Check that an incomplete type without discriminants can be
completed by a type that has discriminants.

Mentioned only by omission, but this
has to be tested somewhere.

C38102A (int, enum, con
arrays, uncon arrays,
untagged records),
C38102B (float), C38102C
(fixed), C38102D (task),
C38102E (formal discrete,
int, float, fixed, array,
private)

Check that an untagged incomplete type without discriminants
can be completed by any type that does not have
discriminants. (Discriminant cases are covered by another
objective.)

C-Test. Try modular, decimal,
protected, interface, formal access,
formal modular, formal decimal, formal
derived, formal interface types, private
types. Best if that can be done as part
of other tests.

(6/3) Legality 8

7

Negative B3A1007 All

B3A1007 All

B3A1007 All

(7/2) Legality 8

Negative B3A1007 All

(8/2) Legality Part 7

(8.1/3) Legality Added by AI05-0151-1. Part 7

(8.2/3) Legality Added by AI05-0203-1. Part 4

AI05-0098-1 makes an insignificant
change to this paragraph.

Check that the name of an incomplete view can be used as
the subtype mark in an access-to-object definition.

C-Test. Try regular and tagged
incomplete types, and incomplete
types from limited views. This is the
primary use of incomplete types, it
should be tested throughly. But it's
nearly “widely-used”, many cases likely
exist in existing tests.

Check that a discriminant constraint can be used when the
name of an incomplete view is used as the subtype mark in an
access-to-object definition.

C-Test. Try regular and tagged
incomplete types, and incomplete
types from limited views.

This is technically redundant (an
incomplete view doesn't have the right
class for these other constraints and
exclusions), but we'll test it here for
completeness.

Check that constraints other than discriminant constraints
cannot be used on the name of an incomplete view when used
as the subtype mark in an access-to-object definition.

Added as a parenthetical remark by
AI05-0098-1.

Check that a null exclusion cannot be used on the name of an
incomplete view when used as the subtype mark in an access-
to-object definition.

Check that constraints (other than appropriate discriminant
constraints) cannot be used on an access-to-incomplete type.

Check that the name of an incomplete view can be used to
declare a subtype.

C-Test. Try regular and tagged
incomplete types, and incomplete
types from limited views. This is a
change from Ada 95.

When the name of an incomplete view is used to declare a
subtype, check that any constraint or null exclusion is illegal.

C3A1003, C3A1004
(tagged incomplete views,
type declarations)

Check that the name of an incomplete view can be used as
the subtype_mark in an access_definition.

C-Test. Try regular and tagged
incomplete types, and incomplete
types from limited views. This is the
primary use of incomplete types, it
should be tested throughly. Try uses in
object declarations, component
declarations, and as parameters and
function results.

C3A1003, C3A1004
(subprograms, tagged
incomplete views)

Check that the name of an incomplete view can be used in the
profile of subprograms, access-to-subprogram types, and
anonymous access-to-subprograms used other than in bodies.

C-Test. Try in procedures, functions,
and named and anonymous access-to-
subprograms. Try tagged and
untagged incomplete types and tagged
and untagged incomplete views
imported from limited views. The
limited view case for normal
subprograms (the reason for the rule
change) is critically important; the other
cases less so.

CC51010 (tagged
incomplete views),
CC51011 (tagged
incomplete types)

Check that the name of an incomplete view can be used as
the actual parameter in an instance corresponding to a formal
incomplete type.

C-Test. Still need to try untagged
incomplete types, untagged incomplete
views from limited views, and
incomplete formal types. It's hard to
think of usage cases for these, thus
the low priority.

(8.3/2) Legality Portion

(8.4/3) Legality Part 4

Negative All

Negative All

Negative All

(9/2) Legality Part 6

Negative All

(9.1/2) Deleted Deleted by AI05-0151-1.

(9.2/3) Deleted Deleted by AI05-0151-1.

(9.3/2) Legality

This is the lead-in for the following
rules. Careful, the paragraph number
was changed by AI05-0151-1 and AI05-
0213-1.

Careful, the paragraph number and
contents were changed by AI05-0151-
1.

B3A1A01 (incomplete
views), C3A1003,
C3A1004 (subprograms,
incomplete views)

Check that the name of a tagged incomplete view can be used
as the subtype_mark of a parameter in a subprogram_body,
entry_body, or accept_statement.

C-Test. Try in procedures, functions,
and named and anonymous access-to-
subprograms, as well as entry_bodies
and accept_statements. Try tagged
incomplete types and tagged
incomplete views imported from limited
views. Existence testing in the B-Test,
subprograms only in the C-Test, only
for incomplete views from limited
views. The limited view case is sort-of
important, incomplete types is meh.

B3A1A01 (incomplete
views), B3A1006
(incomplete types)

Check that the name of an untagged incomplete view cannot
be used as the subtype_mark of a parameter in a
subprogram_body, entry_body, or accept_statement.

B3A1A01 (incomplete
views), B3A1006
(incomplete types)

Check that the name of a tagged incomplete view cannot be
used as the subtype_mark of the result of a function body.

B3A1A01 (incomplete
views), B3A1006
(incomplete types)

Check that the name of an untagged incomplete view cannot
be used as the subtype_mark of the result of a function body.

Note: This is also allowed for untagged
incomplete types as an obsolescent
feature, so we don't test illegal cases.

B3A1A04, C3A1003
(parameters, limited views)

Check that the name of a tagged incomplete view can be used
as the prefix of 'Class when that is used in a context allowed
for a tagged incomplete view.

C-Test. Try tagged incomplete types
and tagged incomplete views imported
from limited views. Try as the
parameter type in a formal_part, as the
designated subtype in named and
anonymous access types (including
those used as parameters), and in a
subtype_declaration. Note: Existence
testing in the B-Test, parameters of
limited views in C-Test (C3A1004 has
similar cases).

B3A1A04 (incomplete
views), B3A1006
(incomplete type, function
result)

Check that the name of a tagged incomplete view cannot be
used as the prefix of the Class attribute used in a context that
does not allow the use of a tagged incomplete view.

There is only one test of tagged
incomplete types in B3A1006, but
since any such case violates freezing
rules or indefinite type rules as well as
this rule, it's not worth testing further.

Widely
used

Modified by AI05-0151-1; essentially
moved 9.2 here. The legal case is the
normal case, not worth testing in
general.

Negative B3A1005 All

(9.4/2) Legality B3A1A02 All

B3A1A02 All

B3A1A02 All

B3A1A05 All

6

B3A1A02 All

B3A1A03 All

(10/3) Legality All

All

Negative Part 6

Part 4

2 Legality Added by AI05-0151-1. 8 B-Test.

Note that subprograms using imported
incomplete views cannot be primitive
for the imported type, so this rule does
not apply to them. Thus we only need
to test incomplete types.

Check that if a use of an incomplete type T is part of the
declaration of a primitive subprogram of T, and T is given in
the private part of package P, T cannot be completed in the
body of P.

Note: We covered parameter subtypes
and function result subtypes under
8.2/2, above.

Check that the name of an incomplete view cannot be used in
the subtype_indication of an object declaration.

Check that the name of an incomplete view cannot be used in
the subtype_indication of a component declaration.

Check that the name of an incomplete view cannot be used in
the subtype_indication of the rename of an object.

Check that the name of an incomplete view cannot be used in
the subtype_indication of a generic formal object

B38105B (normal
incomplete type, formal
private types [inc. limited])

Check that the name of an incomplete view cannot be used as
the actual type for a generic formal type other than a formal
incomplete type

B-Test. Try normal and tagged
incomplete types; and incomplete
views imported from limited views. Try
formal private types, and types where
the full type would match.

Check that the name of an incomplete view cannot be used in
an allocator

Check that the name of an incomplete view cannot be used in
a use_type_clause.

B3A1009 (incomplete
views), B3A1010 (formal
incomplete types)

Check that the name of a parameter that has an incomplete
view cannot be used as a prefix.

B3A1008 (incomplete
types), B3A1009
(incomplete views),
B3A1010 (formal
incomplete types)

Check that a dereference of an access-to-incomplete type
cannot be used as a prefix.

If any other ways to use a dereference
of an access-to-tagged-incomplete type
can the thought up, they should also be
tested. C3A1003 (limited views)

Check that a dereference of an access-to-tagged-incomplete
type can be passed directly as a parameter.

C-Test. Still need a case using a
tagged incomplete type (Taft—
amendment type, probably, used in a
child). Note that there needs to be a
subprogram with the tagged
incomplete parameter declared
elsewhere (in another unit) in order to
make the call. This is the reason that
this feature exists, and it should be
tested.

C3A1004 (limited views)
Check that a parameter of a tagged incomplete type can be
passed directly as a parameter.

C-Test. Still need a case using a
tagged incomplete type (Taft—
amendment type, probably, used in a
child) – somewhat unlikely, thus low
priority. Note that there needs to be a
subprogram with the tagged
incomplete parameter declared
elsewhere (in another unit) in order to
make the call.

Check that the actual parameter to a call cannot be of an
untagged incomplete view.

3 Legality Added by AI05-0151-1. 8

4 Legality Added by AI05-0151-1. 8

(10.1/5) Legality Added by AI12-0155-1 (not in TC1). 1

(11/2) Deleted

(12) Dynamic

(13) NonNormative A note.

(14) NonNormative Start of examples...

(15)

(16)

(17)

(18)

(19/2)

(20/2)

(21/2)

(22)

(23)

Check that the result object of a function call cannot be of an
incomplete view.

B-Test. Probably have to combine with
the previous, using the function as the
actual parameter to another call.

Check that a prefix cannot denote a subprogram having a
formal parameter or result of an incomplete view.

B-Test. Example was 'Access of a
subprogram with an incomplete view
parameter before the completion.

Check that the controlling parameter or controlling result
cannot be an incomplete view if the call is dynamically tagged.

B-Test. Not to be tested until the next
Standard document comes out, then
reasonably high priority. Try both Taft-
Amendment types and limited with.

Not
Testable

We cannot test "no effect", as it would
require guessing an incorrect effect to
check for.

Paragraphs: Objectives with tests: Total objectives:

4 123 118 75 155 1

Must be tested Objectives with Priority 10 0

Objectives with Priority 9 0

Important to test Objectives with Priority 8 7

Objectives with Priority 7 16

Valuable to test Objectives with Priority 6 11

Objectives with Priority 5 19

Ought to be tested Objectives with Priority 4 17

Objectives with Priority 3 4

Worth testing Objectives with Priority 2 0

Not worth testing Objectives with Priority 1 1

Total: 75

74

 Completely: 60

Objectives
to test:

Objectives with
submitted tests:

Objectives covered by new
tests since ACATS 2.6

	Objectives

