
Coverage for ISO/IEC 8652:2012 and subsequent corrections in ACATS 3.x and 4.x
Clauses 6.5-6.8

Objective's Submitted tests

Clause Para. Lines Kind Subkind Notes Tests New Priority Objective Text Objective notes (will need work).

6.5 (1/2) Definitions Return statement

(2/2) Syntax

(2.1/3) Syntax

(2.2/3) Syntax

(2.3/2) Syntax

(3/5) 1 Definitions Result subtype

2 NameRes

NameRes C87B44A

Negative 2

3 NameRes

NameRes 7 C-Test. Look at C87B44A for inspiration.

2

(4/2) 1 Legality All

C650002 All Check that a return statement is allowed in an entry_body.

C650002 All

Negative B650004 All

B650004 All

A Key to Kinds and subkinds is found on the sheet named Key. Tests new to ACATS 3.0 are shown in bold; ACATS 3.1 in bold italic; ACATS 4.0 in blue bold; ACATS 4.1 in blue bold italic. ACATS 4.2 in green bold italic.

AI05-0277-1 gives the declaration it's
own production.

AI05-0015-1 adds “constant”
(Ada2012).

Paragraph number changed by AI05-
0277-1.

Widely
used

Basic resolution is tested in any test
using a simple return statement.

Check that a call to an overloaded function as the expression
of a simple return statement can be resolved if only one of the
functions matches the type of the function containing the
return statement.

B58003A (normal, Integer),
B58003B (generic, Integer)

Check that the type of the expression of a simple return
statement must match the result type of the function.

B-Test; low priority as this is just normal
resolution. We need to try anonymous
access result cases, as well as tagged and
untagged private types (where we try to
return something of the full type).

Widely
used

Basic resolution is tested in any test
using an extended return statement
with an initializing expression. Text (but
not meaning) changed by AI12-0173-
1).

Check that a call to an overloaded function as the expression
of an extended return statement can be resolved if only one of
the functions matches the type of the function containing the
return statement.

Check that the type of the initializing expression of an
extended return statement must match the return subtype of
the return statement.

B-Test; low priority as this is just normal
resolution. We need to try anonymous
access result cases, as well as tagged and
untagged private types (where we try to
initialize with something of the full type).

Widely
used

C58004C, and many
others. C650003
(extended return)

Check that a return statement is allowed in a
subprogram_body.

Check that a return statement is allowed in an
accept_statement.

Check that a simple return statement is illegal if it is not within
a callable construct.

Check that an extended return statement is illegal if it is not
within a callable construct.

2 Legality B650004 All

B650004 All

(5/5) 1 Legality Any legal function.

Negative B65002A, B65002B

2 Legality Any legal simple return statement.

Negative B650002 All

Negative B58002A and B58002B were replaced. B650002 All

Negative B650002 All

3 Legality Subpart Any extended return test.

Negative B650002 All

B650002 All

4 Legality Subpart

Negative B650006 All

(5.1/5) Definition Subpart

(5.2/5) Legality Portion Lead-in for the bullets below.

(5.3/5) 1 Legality Subpart Most extended return tests.

Negative B650001 All

2 Legality Subpart Most extended return tests.

"Covered by" is added by AI05-0032-1. All

"Construct to which it applies" can be a
procedure, function, entry body, accept
statement, or extended return
statement.

Check that a simple return statement is illegal if it is within a
body that is within the construct to which it applies.

Check that an extended return statement is illegal if it is within
a body that is within the construct to which it applies.

Widely
used

Check that a function is illegal if it does not contain a return
statement.

Widely
used

B58002A, B58002B, B58002C were
replaced; there was no entry body test.

Check that a simple return statement cannot have an
expression if used in a procedure body, entry body, or accept
statement.

Check that a simple return statement cannot omit the
expression if used in a function body.

Check that a simple return statement inside of an extended
return statement cannot have an expression.

Check that an extended return statement cannot be used to
return from a procedure body, entry body, or accept
statement.

Check that an extended return statement cannot be used to
return from an outer extended return statement.

Any extended return test using
constant. Rule added by AI05-
0015, then text modified by AI12-
0173-1.

Check that an extended return statement containing
constant cannot omit an expression.

Definition of expression of an extended
return, added by AI12-0173-1. Widely
used in other rules, no semantic
change intended. Does change
paragraph numbers of below
paragraphs.

Check that the return_subtype_indication of an extended
return statement cannot be an access_definition if the result
subtype of the function it appears in is given by a
subtype_mark.

C650B03 (nonlimited),
C650A02 (two limited
cases in auxillary function)

Check that if the result subtype of a function is class-wide, the
return_subtype_indication of an extended_return_statement
given within it can be any definite specific subtype that is
covered by the class-wide result type.

Negative B650001 All

3 Legality Subpart

Negative B650001 All

B650001 All

B650001 All

4 Legality 8

7

Negative B650001 All

(5.4/5) 1 Legality Subpart

Negative B650001 All

2 Legality Subpart

Negative B650001 All

3 Definition

(5.5/5) Legality B650005 All

(5.6/5) Legality Portion

Check that the return_subtype_indication of an extended
return statement cannot fail to be covered by the result
subtype of the function it appears in if that subtype is given by
a subtype_mark.

Many extended return tests.
Substantially changed by AI05-0103-1.

Check that if the result subtype of a function is constrained, an
extended return statement given within it cannot have an
unconstrained return_subtype_indication.

This objective is OK, even given the new
wording (it is just more limited than
necessary).

Check that if the result subtype of a function is elementary, an
extended return statement given within it is illegal if the
return_subtype_indication does not statically match the result
subtype.

Check that an extended return statement is illegal if the
return_subtype_indication is not statically compatible with the
result subtype.

Check that if the result subtype of a function is indefinite, the
return_subtype_indication of an extended_return_statement
given within it can be any definite subtype of the result type.

C-Test. Class-wide cases have their own
objective above; this objective covers
discriminated records and unconstrained
arrays. Combine with the following??

C650A02 (limited, class-
wide)

Check that if the result subtype of a function is indefinite, the
return_subtype_indication of an extended_return_statement
given within it can be indefinite if an expression is given.

C-Tests. (Vaguely covered in B650001.)
Still need a test for discriminated records
and for unconstrained arrays.

Check that if the result subtype of a function is indefinite, the
return_subtype_indication of an extended_return_statement
given within it cannot be indefinite unless an expression is
given.

Any C-Test with an anon. access return
subtype

Check that the return_subtype_indication of an extended
return statement cannot be a subtype_indication if the result
subtype of the function it appears in is given by an
access_definition.

Any C-Test with an anon. access return
subtype

Check that the subtype defined by the access_definition in the
return_subtype_indication of an extended_return_statement is
illegal if it does not statically match the return subtype of the
function that it applies to.

Accessibility level of extended return
statement.

This paragraph was added by AI05-
0032-1.

If the result subtype of a function is class-wide, check that the
accessibility level of the type of the return_subtype_indication
of an extended return statement cannot be statically deeper
than the master that elaborated the function.

Lead-in for the bullets below. [Careful,
this paragraph was renumbered by
AI05-0032-1]

(5.7/5) Redundant

(5.8/5) Legality B650003 All

(5.9/5) Legality 7

(5.10/5) Legality Added by AI05-0277-1. 5

Negative 7 B-Test.

(5.11/5) 1 StaticSem Subpart

2 Subpart

(5.12/5) 1 Dynamic 6

2 No observable effect.

3 6

4 6

5 6

6, 7 Added by AI05-0032-1. 6

(6/2) Dynamic 4

This rule is redundant with 7.5(2.8/2);
we'll test it there. [Careful, this
paragraph was renumbered by AI05-
0032-1]

6.5(8/2) contains a run-time version of
this rule. This paragraph was
renumbered by AI05-0032-1.

If the result subtype of a function is class-wide, check that the
accessibility level of the type of the return expression cannot
be statically deeper than the master that elaborated the
function.

6.5(21/3) contains a run-time version of
this rule. This paragraph was split from
the preceding paragraph by AI05-0051-
1.

If the result subtype of a function has unconstrained access
discriminants, the accessibility level of the type of each
discriminant cannot be statically deeper than the master that
elaborated the function.

B-Test. Good luck figuring out how to test
this. ;-)

If the result subtype of a function is immutably limited, check
that the keyword aliased can be used in an
extended_return_object_declaration.

C-Test. We include a C-Test here because
this is likely to be rare and thus not tested
much elsewhere (the only other known test
would be in 3.10).

If the keyword aliased is present in an
extended_return_object_declaration, check that the type of the
result object cannot be any type that is not immutably limited.

Defines the nominal subtype, affects
other rules. [Careful, this paragraph
was renumbered by three AIs]

Added by AI05-0015. Defines the
return object as a constant.

Modified by AI05-0032-1; renumbered
by 3 AIs.

Check that the subtype of an extended return statement is
elaborated.

C-Test. Check that exceptions are raised if
needed, and any functions are called.

Not
Testable

Can't check that an anonymous access
type is elaborated: it has no effect.

Not
Testable

Check that the expression of an extended return is evaluated
and converted to the nominal subtype.

C-Test. Check that exceptions are raised
for necessary, and any functions are called,
and Adjust is called if needed. Priority is
higher than usual for this sort of objective
because the statement is new.

Check that an extended return statement without an
expression causes the return object to be initialized by default.

C-Test. Check that value is correct, and
that any functions are called. If Initialize is
is called when needed is an objective for
7.6(10/2).

Check that an extended return statement with an object of an
indefinite subtype is constrained by its initial value.

C-Test. Try to change the
bounds/discriminants.

Check that Constraint_Error is raised if the return object is not
in the return subtype.

C-Test. This is thought to be only possible
for class-wide return subtypes that have a
constraint.

C58005A (integer),
C58005B (integer),
C58005H (access),
C58006A, C58006B
(integer eval.)

Check that the expression of an simple return is evaluated and
converted to the result subtype of the function.

C-Test. Check constraints of array and
record types. Check class-wide
expressions for functions returning specific
tagged types.

(7/2) Redundant Tested in 9.2.

(8/4) 1 Dynamic C650B01 All

2 Dynamic All

All

All

3, 4 Dynamic Changed by AI05-0024. Part 5

(8.1/3) Dynamic Added by AI05-0073-1. C650A01 All

(9/2) Deleted

(10/2) Deleted

(11/2) Deleted

(12/2) Deleted

(13/2) Deleted

(14/2) Deleted

(15/2) Deleted

(16/2) Deleted

(17/2) Deleted

(18/2) Deleted

(19/2) Deleted

(20/2) Deleted

(21/3) Dynamic 8

6

Check that result of a function that returns a specific tagged
type has the tag of the tagged result type, even if the return
expression has a different tag.

Changed by AI05-0032-1 and AI12-
0097-1.

C390004 (simple returns of
a local object), C650A02
(returns of limited
expressions), C650B02
(returns of non-limited
expressions)

Check that the tag of the result of a function that returns a
class-wide tagged type with a simple return statement is that
of the expression.

C650A02 (returns of limited
expressions), C650B02
(returns of non-limited
expressions)

Check that the tag of the result of a function that returns a
class-wide tagged type with an extended return statement
whose subtype indication has a class-wide type is the tag of
the initializing expression.

C650B03 (nonlimited),
C650A02 (two limited
cases in auxillary function)

Check that the tag of the result of a function that returns a
class-wide tagged type with an extended return statement
whose subtype indication has a specific type is the tag of the
specific type.

C650B04 (nonlimited,
simple cases)

Check that Program_Error is raised if the tag identified by the
result object for a function returning a class-wide type has a
master that does not include the elaboration of the master that
elaborated the function body.

C-Test. Make sure to only test cases that
aren't illegal by 6.5(5.6/2). Don't forget to
test extended returns. Still need to do
incomparable cases like those found in
AI05-024 (but hold for resolution of AI12-
0016-1). Try to use foundation F650B00 for
the basic types.

Check that Constraint_Error is raised if the result subtype of
the function is an anonymous access type designating a
specific tagged type and the result value is not null and
designates some other specific type.

Rule was substantially modified by
AI05-0051-1.

If the result subtype of a function has access discriminants,
check that Program_Error is raised if the accessibility level of
the type of any corresponding access discriminant is deeper
than the master of the call.

C-Test. Make sure to only test cases that
aren't illegal by 6.5(5.8/3). Be careful that
your head does not explode.

If any subcomponent of the specific result subtype of a
function has access discriminants, check that Program_Error
is raised if the accessibility level of the type of any
corresponding access discriminant is deeper than the master
of the call.

C-Test. Be sure to test cases where the
presence of access discriminants is only
known at run-time, and cases where they
don't actually exist. (See the AARM notes.)

(22/3) 1 Dynamic Subpart

2 C650003 Part 4

3 C58004C, C58004G

C650003 All

C650003 All

C650002 All

C650002 All

(23/2) Dynamic Subpart

(24/3) Impl-Def Subpart

(24.1/3) Impl-Def A permission, added by AI05-0050.

(24.2/3) Impl-Def A permission, added by AI05-0050.

Negative 8

Negative 7

(25) NonNormative Start of example...

(26/2) NonNormative

(27) NonNormative

(28/2) NonNormative ...end of example.

Any legal extended return statement
will do this. The wording was changed
by AI05-0058-1, but that has no impact
on testing.

Check that a simple return statement in the
handled_sequence_of_statements of an extended return
statement completes the extended return statement and
causes the function to return.

C-Test. Try this with other kinds of types
(arrays, anonymous access, etc.).

Check that the completion of a simple return statement that
applies to a function causes the function to return.

Check that reaching the end return of an extended return
statement that applies to a function causes the function
to return.

This test just tries a limited record type.
Other kinds of types will be tried with C-
Tests for other objectives.

Check that completing an extended return statement by an
exit, goto, or exception propagation does not cause the
function that the extended return applies to to return.

C58004C, C58004D,
C58004G

Check that the completion of a return statement that applies to
a procedure causes the procedure to return (and not some
enclosing subprogram).

Check that the completion of a return statement that applies to
an entry body causes the entry to return.

Check that the completion of a return statement that applies to
an accept statement causes the accept statement to return.

Constantness is defined in 3.3(15-22),
and the results of that rule are tested
elsewhere.

Not separately testable, but it needs to
be taken into account when creating
other tests. Modified by AI05-0050,
now a lead-in.

Check that if the result subtype of a function is unconstrained
and the return object is not known to be constrained,
Constraint_Error is not raised before the entire function
executes

C-Test. We're checking that the permission
is not applied inappropriately. The return
object should have discriminants with
defaults (the wrong defaults), be default-
initialized, and the discriminants should be
changed to the correct ones before
returning (so that no exception should be
raised).

Check that if the result subtype of a function is an
unconstrained elementary type, and the return object in an
extended return statement is initialized to be out-of-range for
the result object, Constraint_Error is not raised until the entire
extended return statement has executed

C-Test. We're checking that the permission
is not applied to elementary type functions.
Use Integer'Base to get an unconstrained
discrete type. Also try float and access
types (not null).

6.5.1 (1/3) General

(2/3) Deleted Deleted by AI05-0229-1.

(3/3) Deleted Deleted by AI05-0229-1.

(3.1/3) Definitions Lead-in

Negative 7 B-Test.

Negative 6

(3.2/3) 1 NameRes 2

2 Definitions

(3.3/3) 1 Legality Subpart Legal tests will check this.

Negative 5

2 Definitions

(3.4/3) Definitions

(4/3) Legality 7 B-Test.

7 B-Test.

6

(5/2) Legality 8

(6/2) Legality 7 B-Test.

(7/2) Legality 7

(8/3) Deleted Deleted by AI05-0229-1. 6 Check that a non-returning procedure can be dispatching.

(9/2) Dynamic 8

8 C-Test.

AI05-0229-1 rewrites the entire section
in terms of aspects.

Check that the aspect No_Return cannot be specified for a
function or entry.

Check that the aspect No_Return cannot be specified for a
non-subprogram.

B-Test. Try objects, exceptions, packages,
tasks, protected objects, types.

Check that the expected type of the expression specified for
aspect No_Return is Boolean.

B-Test; low priority as this is just normal
resolution and as the expression has to be
static, its hard to test any meaningful
overloading cases.

Defines “nonreturning”. Other tests will
test this definition.

Check that the expression specified for aspect No_Return
cannot be nonstatic.

B-Test. Try calculated expressions where
the value is known but are not formally
static (Size of a composite, for instance).

Widely
Used

Defines that the aspect is not set by
default. Any test that doesn't use
Non_Returning implicitly is testing this.

This rule should be tested as part of
other tests, specifically that of
paragraph 9.

Check that the aspect No_Return cannot be specified for a
null procedure.

Check that the aspect No_Return cannot be specified for a
generic instance of a procedure.

Check that the name given in a pragma No_Return cannot be
an entry.

Check that a return statement cannot be used in a
nonreturning procedure.

B-Test. Check simple returns, both at the
outer level and nested inside of statements
and blocks. Check both generic and non-
generic subprograms.

Check that a procedure that overrides a dispatching non-
returning procedure must be non-returning.

C-Test. This is a corollary of this rule.

Check that a renames-as-body that completes a non-returning
procedure declaration renames a non-returning procedure.

B-Test. Try renaming instances and
procedures in instances.

Check that a non-returning procedure raises Program_Error if
it attempts to return normally.

C-Test. This is a procedure that falls off the
end of the code. Try this in procedures
declared in generics as well as normally.

Check that a non-returning procedure can propagate an
exception to "return" to the caller.

(10/3) NonNormative An example.

6.6 (1) 1 Definitions "operator".

2 Redundant

(2) Definitions

(3/3) 1 Legality Modified by AI05-0143-1.

B660003 All

2 B67001C

C67002D

B660003 All

(4) Legality

(5) Legality B660001, B660002

(6/3) StaticSem Modified by AI05-0128-1. C660001 All

B660002

C660001 All

(7) NonNormative A note.

(8) NonNormative Start of example...

Widely
Used

Any use of user-defined operators tests
this equivalence.

B67001A (normal
declarations), B67001B
(formal subprograms),
B67001D (renaming)

Check that the subprogram declaration defining an operator
cannot have more or less parameters than defined by the kind
of operator (unary or binary).

B67001A, B67001B,
B67001C, B67001D,
B67001H, B67001I,
B67001J, B67001K

Check that non operators (membership, short circuit,
assignment) cannot be used in operator symbols.

C67002A (normal),
C67002B (case
differences), C67002C
(formal subprograms),
C67002E (renames)

Check that a subprogram declaration for an operator symbol
can be given if the number of parameters is correct for the
kind of operator (unary or binary).

Check that parameters of mode in out and out are not
allowed in the declaration of operators.

Check that an instance defining an operator cannot have more
or less parameters than defined by the kind of operator (unary
or binary).

Check that a instance can be named by an operator symbol
can be given if the number of parameters is correct for the
kind of operator (unary or binary).

Check that a generic function with a parameter of mode in
out or out cannot be instantiated as an operator.

B67001A (normal
declarations), B67001B
(formal subprograms),
B67001C (instances),
B67001D (renaming)

Check that default expressions are not allowed in the
parameters of an operator.

Check that an explicit declaration of "/=" does not have a
result of Boolean.

Check that an explicit declaration of "=" whose result is
Boolean declares a "/=" as well.

The test tries the tagged case; the
untagged case occurs for various
language-defined packages including
Ada.Strings.Unbounded, so a bug would
turn up in virtually any test or use of those
packages – a separate test is unnecessary.

Check that a declaration of "=" whose result is not Boolean
does not declare a "/=".

Check that a declaration of "/=" implicitly created by the
declaration of "=" with a Boolean result is inherited for a
derived type.

(9) NonNormative ...end of example.

6.7 (1/2) General

(2/3) Syntax

(2.1/3) 1 Legality 4 C-Test.

Negative 6 B-Test.

2 Legality 6

(3/2) 1 Definitions "null procedure"

2 Legality B670001 All Check that a completion is not allowed for a null procedure.

(4/2) Dynamic

(5/3) Dynamic

Negative 3

(6/2) NonNormative An example. 4 C-Test.

6.8 (1/3) General

(2/4) Syntax Aggregate was added by AI12-0157-1.

(3/4) NameRes Aggregate was added by AI12-0157-1. 5

Negative B680001 All

(4/3) 1 Legality C680001 All

B680001 All

AI05-0183-1 adds aspect clauses;
these will be tested as part of other
rules.

Check that a null procedure can be the completion of a
procedure or generic procedure declaration.

Check that a null procedure cannot complete a function
declaration or any kind of subprogram body.

Check that a null procedure that completes a procedure or
generic procedure declaration must fully conform to the profile
of that declaration.

B-Test. We don't need to check all of the
conformance rules here, just a small
selection to ensure that the check is made.

Not
Testable

Can't check "no effect", as we'd have to
guess what effect the implementation
would mistakenly have.

Not
Testable

Can't check "no effect", except to
ensure that elaboration checks don't
fail. Any call to a null procedure will test
that.

Check that a call to a procedure that is completed by a not yet
elaborated null procedure raises Program_Error.

C-Test. Low priority because it's hard to
construct such a case, so it's pretty unlikely
– and nothing bad will happen even if the
check is omitted. Could base on the test
from C680001.

Check that a null procedure can be called when the body of
the package it is contained in has not yet been elaborated.

This entire subclause was added by
AI05-0177-1.

Check that a call to an overloaded function as the expression
of a expression function can be resolved if only one of the
functions matches the result type of the expression function.

C-Test. Not very important as it's just
normal resolution.

Check that the type of the expression of an expression
function must match the result type of the expression function.

We could test additional cases (the test
only tries two simple cases) but this is
unimportant as this is just normal
resolution.

Check that an expression function can be the completion of a
function or generic function declaration.

Check that an expression function cannot complete a
procedure declaration, a package declaration, or any kind of
body.

Could have tried other kinds of program
units (protected, tasks) and additional
bodies, but those are just normal
homograph rules.

2 Legality B680001 All

(5/4) Legality Aggregate was added by AI12-0157-1. 7

(6/4) 1 Definition “expression function”

2 Definition “return expression”

3 Legality B680001 All

(7/4) Dynamic C680001 Part 4

B732C01 Part 5

C680001 All

(8/3) Dynamic

Negative C680001 All

(9/3) NonNormative An example.

Check that an expression function that completes a function or
generic function declaration must fully conform to the profile of
that declaration.

Could have tried more cases of
conformance (the test only tries 3), but we
expect the conformance rules to be
throughly tested in subclause 6.3.1.

If the result subtype of an expression function has
unconstrained access discriminants, the accessibility level of
the type of each discriminant cannot be statically deeper than
the master that elaborated the function.

B-Test. Good luck figuring out how to test
this. ;-) [But it's the same as 6.5(5.8/3).] It's
not clear that it is testable here, as no local
objects are possible.

Check that a completion is not allowed for an expression
function.

There really is only one way to do this
sensibly, other cases usually are normal
homograph violations.

Check that a call to an expression function executes as a body
containing only a simple return of the expression of the
expression function.

C-Test. Try cases that fail the checks
described in 6.5 for a simple return (in
particular, the various tag checks).

Check that an aggregate can directly be the return expression
of an expression function.

C-Test. Existing B-Test tries it, still need to
execute. Not very important as it's hard to
imagine it going wrong.

Check that an expression function can include a recursive call
on itself.

This test ensures that the implementation
can deal with expression functions that
cannot be inlined.

Not
Testable

Can't check "no effect", except to
ensure that elaboration checks don't
fail. Any call to an expression function
will test that.

Check that a call to a function that is completed by a not yet
elaborated expression function raises Program_Error.

Paragraphs: Objectives with tests: Total objectives:

5 85 64 42 99 0

Must be tested Objectives with Priority 10 0

Objectives with Priority 9 0

Important to test Objectives with Priority 8 6

Objectives with Priority 7 11

Valuable to test Objectives with Priority 6 11

Objectives with Priority 5 5

Ought to be tested Objectives with Priority 4 5

Objectives with Priority 3 1

Worth testing Objectives with Priority 2 3

Not worth testing Objectives with Priority 1 0

Total: 42

49

 Completely: 45

Objectives
to test:

Objectives with
submitted tests:

Objectives covered by new
tests since ACATS 2.6

	Objectives

