
Coverage for ISO/IEC 8652:2012 and subsequent corrections in ACATS 3.x and 4.x
Subclause 13.1.1

Objective's Submitted tests

Clause Para. Lines Kind Subkind Notes Tests New Priority Objective Text Objective notes (will need work).

13.1.1 (1/3) Definitions Associated declaration

(2/3) Syntax

(3/3) Syntax

(4/3) Syntax

(5/3) 1 NameRes Subpart This is descriptive text.

2 Portion This is a lead-in for the following

(6/3) NameRes 3

Negative 6

(7/3) NameRes 3

3

Negative 5

Negative 5

(8/3) NameRes 3

Negative 6

(9/3) NameRes 3

Negative 5

(10/3) NameRes 3

A Key to Kinds and subkinds is found on the sheet named Key. Tests new to ACATS 3.0 are shown in bold; ACATS 3.1 in bold italic; ACATS 4.0 in blue bold; ACATS 4.1 in blue bold italic. ACATS 4.2 in green bold italic.

For an aspect that represents an object, the
aspect_declaration can be a name denoting an object of the
correct type.

C-Test. Try with Storage_Pool. Low
priority since any use of an appropriate
aspect will test.

For an aspect that represents an object, the
aspect_declaration cannot be an expression of correct type
nor a name of an object of the wrong type.

B-Test. Try with Storage_Pool.
Medium priority because this is fairly
normal resolution.

For an aspect that represents a value, the aspect_declaration
can be an expression of the correct type.

C-Test. Try with Size, Alignment,
others?. Low priority since any use of
an appropriate aspect will test.

For an aspect that represents an expression, the
aspect_declaration can be an expression of the correct type.

C-Test. Try with Pre, Static_Predicate,
others?. Low priority since any use of
an appropriate aspect will test.

For an aspect that represents a value, the aspect_declaration
cannot be an expression of the wrong type.

B-Test. Try with Size, Alignment,
others? Medium priority because this is
fairly normal resolution.

For an aspect that represents an expression, the
aspect_declaration cannot be an expression of the wrong
type.

B-Test. Try with Pre, Static_Predicate,
others? Medium priority because this is
fairly normal resolution.

For an aspect that represents a subprogram, the
aspect_declaration can be a name denoting an subprogram
with the correct profile.

C-Test. Try with Read, Input. Low
priority since any use of an appropriate
aspect will test.

For an aspect that represents a subprogram, the
aspect_declaration cannot be an expression that is not a
subprogram nor the name of a subprogram with the wrong
profile.

B-Test. Try with Read, Input. Medium
priority because this is fairly normal
resolution.

For an aspect that represents something other than an object,
value, expression, or subprogram, the aspect_declaration can
be a name denoting an entity of the correct kind.

C-Test. Try with ???. Low priority since
any use of an appropriate aspect will
test.

For an aspect that represents something other than an object,
value, expression, or subprogram, the aspect_declaration
cannot be an expression or name denoting the wrong kind of
entity.

B-Test. Try with ???. Medium priority
because this is fairly normal resolution.

For an aspect that is given by an identifier specific to the
aspect, the aspect_declaration can one of the identifiers
specific to the aspect.

C-Test. Try with Synchronized. Low
priority since any use of an appropriate
aspect will test.

Negative 6

(11/3) NameRes BD11002, BDD2005 Part 6

Negative BD11002 All

(12/3) 1 NameRes CD11001 All

Negative 1

2 CD11001 All

CD11001 All

3 CD11001 All

Negative 1

(13/3) Legality Widely Used Any correct aspect will test.

Negative BD11001 All

(14/3) 1 Legality Widely Used Any correct aspect will test.

Negative BD11001 All

2 Widely Used Any correct aspect will test.

Negative BD11001 All

(15/3) Legality Widely Used

For an aspect that is given by an identifier specific to the
aspect, the aspect_declaration cannot be an expression nor
some identifier other than the ones specific to the aspect.

B-Test. Try with Synchronized.
Perhaps this is better tested for each
individual aspect?

The usage names in an aspect_declaration are resolved at the
end of the innermost enclosing declaration list.

C-Test. Make sure that items not
declared at the point of the
aspect_specification can be
referenced. The B-Tests try some such
cases but (of course) does not attempt
to execute them. Possibly tests for
Pre/Post will try this? Any stream
attribute tests would necessarily do so.

Check that the usage names in an aspect_declaration given in
the visible part of a package are resolved at the end of the the
visible part; in particular, names declared in the private part
cannot be used.

For an associated declaration that is a subprogram, check that
the names of parameters are directly visible in each
aspect_declaration.

For an associated declaration that is a subprogram, check that
the name of the subprogram is not visible in each
aspect_declaration.

Would be a B-Test, but it's not testable
as the name of the subprogram surely
will be visible at the point of resolution
(the end of the declaration list).

For an associated declaration that is a type declaration, check
that the current instance of the type is directly visible in each
aspect_declaration.

For an associated declaration that is a type declaration, check
that the names of components are directly visible in each
aspect_declaration.

For an associated declaration that is a subtype declaration,
check that the current instance of the subtype is directly visible
in each aspect_declaration.

For an associated declaration that is an object, check that the
name of the object is not visible in each aspect_declaration.

Would be a B-Test, but it's not testable
as the name of the object surely will be
visible at the point of resolution (the
end of the declaration list).

An aspect_declaration is illegal if any usage name resolves
differently at the first freezing point of the associated entity and
at the end of the immediately enclosing declaration list.

Multiple occurrences of an aspect cannot occur in a single
aspect_specification.

The aspect_mark is illegal if it doesn't identify an aspect of the
associated entity.

We just try a few simple cases; each
aspect should test this more throughly.

Commonly used for boolean aspects
like Pack and Pure.

Negative BD11001 All

(16/3) Legality Widely Used Any correct class-wide aspect will test.

Negative BD11001 All

(17/3) Legality BD11001 All A language-defined aspect cannot be specified on a renames.

BD11001 All

(18/4) Legality BD11001 Part 5

(18.1/4) StaticSem 6

6

6

6

6

6

6

6

6

(18.2/4) Definitions

(18.3/4) Legality Added by AI12-0138-1. 4

4

The aspect_definition cannot be omitted for a non-boolean
aspect

An aspect cannot include 'Class unless it applies to a tagged
type or primitive subprogram of a tagged type.

We just try a few simple cases where
the aspect would have been allowed
on the original declaration.

A language-defined aspect cannot be specified on a generic
formal parameter.

We just try a few simple cases where
the aspect would have been allowed
on the original declaration.

Wording modified by AI12-0105-1,
intent of rule is unchanged.

A language-defined aspect cannot be specified on the
completion of a subprogram.

Still need to try on body_stubs acting
as a completion.

All boolean aspects of types are listed
at right. Rule moved here by AI12-
0138-1.

Check that if a derived type inherits Pack as True from an
ancestor, specifying it as False is illegal.

Check that if a derived type inherits Volatile as True from an
ancestor, specifying it as False is illegal.

B-Test: should be in C.6, as this is
annex specific.

Check that if a derived type inherits Atomic as True from an
ancestor, specifying it as False is illegal.

B-Test: should be in C.6, as this is
annex specific.

Check that if a derived type inherits Independent as True from
an ancestor, specifying it as False is illegal.

B-Test: should be in C.6, as this is
annex specific.

Check that if a derived type inherits Volatile_Components as
True from an ancestor, specifying it as False is illegal.

B-Test: should be in C.6, as this is
annex specific.

Check that if a derived type inherits Atomic_Components as
True from an ancestor, specifying it as False is illegal.

B-Test: should be in C.6, as this is
annex specific.

Check that if a derived type inherits Independent_Components
as True from an ancestor, specifying it as False is illegal.

B-Test: should be in C.6, as this is
annex specific.

Check that if a derived type inherits Discard_Names as True
from an ancestor, specifying it as False is illegal.

B-Test: should be in C.5, as this is
annex specific.

Check that if a derived type inherits Unchecked_Union as True
from an ancestor, specifying it as False is illegal.

Note: Import and Export are boolean,
but are never inherited so this rule
doesn't apply to them. Default_Value
and Default_Component_Value can be
Boolean, but they explicitly disclaim
this rule.

“nonoverridable” Added by AI12-0138-
1.

Check that a descendant of a type with Implicit_Dereference
specified can specify a confirming value for the aspect.

C-Test. Not very important, it won't
happen in usual use of the aspect.

Check that a descendant of a type with Constant_Indexing
specified can specify a confirming value for the aspect.

C-Test. Not very important, it won't
happen in usual use of the aspect.

4

4

4

Negative B415001 All

Negative Part 5

Negative Part 5

Negative 6

Negative 6

(18.4/4) Legality Added by AI12-0138-1. 4

4

4

4

4

Negative B415001 Part 4

Negative Part 5

Check that a descendant of a type with Variable_Indexing
specified can specify a confirming value for the aspect.

C-Test. Not very important, it won't
happen in usual use of the aspect.

Check that a descendant of a type with Default_Iterator
specified can specify a confirming value for the aspect.

C-Test. Not very important, it won't
happen in usual use of the aspect.

Check that a descendant of a type with Iterator_Element
specified can specify a confirming value for the aspect.

C-Test. Not very important, it won't
happen in usual use of the aspect.

Check that a descendant of a type with Implicit_Dereference
specified cannot specify a nonconfirming value for that aspect.

B416001 (case F)
Check that a descendant of a type with Constant_Indexing
specified cannot specify a nonconfirming value for that aspect.

B-Test. Still need to try in the visible
and private parts of an instance, a
renames that renames the entity in
question.

B416001 (case F)
Check that a descendant of a type with Variable_Indexing
specified cannot specify a nonconfirming value for that aspect.

B-Test. Still need to try in the visible
and private parts of an instance, a
renames that renames the entity in
question.

Check that a descendant of a type with Default_Iterator
specified cannot specify a nonconfirming value for that aspect.

B-Test. Try a renames that renames
the entity in question.

Check that a descendant of a type with Iterator_Element
specified cannot specify a nonconfirming value for that aspect.

B-Test. Try a renames that renames
the entity in question.

Check that Implicit_Dereference can be specified for the full
view of a private type if the partial view does not have
discriminants.

C-Test. Not very important, it won't
happen in usual use of the aspect.

Check that Constant_Indexing can be specified for the full
view of a private type if the partial view is untagged.

C-Test. Not very important, it won't
happen in usual use of the aspect.

Check that Variable_Indexing can be specified for the full view
of a private type if the partial view is untagged.

C-Test. Not very important, it won't
happen in usual use of the aspect.

Check that Default_Iterator can be specified for the full view of
a private type if the partial view is untagged.

C-Test. Not very important, it won't
happen in usual use of the aspect.
Note: We can't test the case where the
partial view is non-indexable but
tagged, because the full view would
either be illegal by this rule or it too
would not be indexable.

Check that Iterator_Element can be specified for the full view
of a private type if the partial view is untagged.

C-Test. Not very important, it won't
happen in usual use of the aspect.
Note: We can't test the case where the
partial view is non-indexable but
tagged, because the full view would
either be illegal by this rule or it too
would not be indexable.

Check that Implicit_Dereference cannot be specified for the
full view of a private type or private extension if the partial view
has known discriminants.

B-Test. Probably in 4.1.5. Still need to
check inside a generic.

B416001 (case B)
Check that Constant_Indexing cannot be specified for the full
view of a private type if the partial view is tagged.

B-Test. Probably belongs in 4.1.6.
Check when the partial view has
specified the aspect, and check inside
a generic.

Negative Part 5

Negative 6

Negative 6

4 C-Test. Not very likely to get wrong.

4 C-Test. Not very likely to get wrong.

4 C-Test. Not very likely to get wrong.

4 C-Test. Not very likely to get wrong.

4 C-Test. Not very likely to get wrong.

Negative B415001 All

Negative 6

Negative 6

Negative 6

Negative 6

B416001 (case B)
Check that Variable_Indexing cannot be specified for the full
view of a private type if the partial view is tagged.

B-Test. Probably belongs in 4.1.6.
Check when the partial view has
specified the aspect, and check inside
a generic.

Check that Default_Iterator cannot be specified for the full
view of a private type if the partial view is indexable.

B-Test. Probably belongs in 5.5.1.
Check when there is no aspect on the
partial view, as well as when the partial
view has specified the aspect. Note:
Tagged but not indexable is illegal for
the indexing aspects.

Check that Iterator_Element cannot be specified for the full
view of a private type if the partial view is indexable.

B-Test. Probably belongs in 5.5.1 (its
specific to this aspect). Check when
there is no aspect on the partial view,
as well as when the partial view has
specified the aspect. Note: Tagged but
not indexable is illegal for the indexing
aspects.

Check that Implicit_Dereference can be inherited for the full
view of a private type if the partial view inherits or specifies the
same value.

Check that Constant_Indexing can be inherited for the full view
of a private type if the partial view inherits or specifies the
same value.

Check that Variable_Indexing can be inherited for the full view
of a private type if the partial view inherits or specifies the
same value.

Check that Default_Iterator can be inherited for the full view of
a private type if the partial view inherits or specifies the same
value.

Check that Iterator_Element can be inherited for the full view
of a private type if the partial view inherits or specifies the
same value.

Check that Implicit_Dereference cannot be inherited for the full
view of a private type if the partial view has known
discriminants and does not inherit or specify the same value of
the same aspect.

Check that Constant_Indexing cannot be inherited for the full
view of a private type if the partial view is tagged and does not
inherit or specify the same value of the same aspect.

B-Test. Probably belongs in 4.1.6 (it's
aspect-specific).

Check that Variable_Indexing cannot be inherited for the full
view of a private type if the partial view is tagged and does not
inherit or specify the same value of the same aspect.

B-Test. Probably belongs in 4.1.6 (it's
aspect-specific).

Check that Default_Iterator cannot be inherited for the full view
of a private type if the partial view does not inherit or specify
the same value of the same aspect.

B-Test. Probably belongs in 5.5.1 (it's
aspect-specific).

Check that Iterator_Element cannot be inherited for the full
view of a private type if the partial view does not inherit or
specify the same value of the same aspect.

B-Test. Probably belongs in 5.5.1 (it's
aspect-specific).

(18.5/4) Legality Negative Added by AI12-0138-1. 6

Negative 6

Negative 6

Negative 6

Negative 6

(18.6/4) Redundant Added by AI12-0138-1.

(19/3) StaticSem Portion Lead-in for the following.

(20/3) StaticSem Subpart

(21/3) StaticSem Subpart

(22/3) StaticSem Subpart

(23/3) StaticSem Portion Lead-in for the following.

(24/3) StaticSem 5 An aspect specified on an object_declaration is view-specific.

(25/3) StaticSem 3

(26/3) StaticSem 1

Check that an instance is illegal if an actual type has
Implicit_Dereference specified, and it is specified for a derived
type that inherits from the corresponding formal type.

B-Test. Probably belongs in 4.1.5 (it's
aspect-specific).

Check that an instance is illegal if an actual type has
Constant_Indexing specified, and it is specified for a derived
type that inherits from the corresponding formal type.

B-Test. Probably belongs in 4.1.6 (it's
aspect-specific).

Check that an instance is illegal if an actual type has
Variable_Indexing specified, and it is specified for a derived
type that inherits from the corresponding formal type.

B-Test. Probably belongs in 4.1.6 (it's
aspect-specific).

Check that an instance is illegal if an actual type has
Default_Iterator specified, and it is specified for a derived type
that inherits from the corresponding formal type.

B-Test. Probably belongs in 5.5.1 (it's
aspect-specific).

Check that an instance is illegal if an actual type has
Iterator_Element specified, and it is specified for a derived
type that inherits from the corresponding formal type.

B-Test. Probably belongs in 5.5.1 (it's
aspect-specific).

This just says that the aspect_definition
is interpreted and evaluated as a name
for some aspects. Test for the
individual aspects.

This just says that the aspect_definition
is interpreted and evaluated as an
expression for some aspects. Test for
the individual aspects.

This just says that the aspect_definition
is interpreted as an identifier specific to
the aspect for some aspects. Test for
the individual aspects.

C-Test. In particular, an object passed
by reference may have other values for
the aspects (Size, Alignment). Not
particular critical to test.

An aspect specified on a subprogram_declaration is view-
specific.

C-Test. But is this testable (as there
are no aspects on bodies)? This
seems to imply that aspects can be
different on a renames (but that also
doesn't allow any aspects).

An aspect specified on a renaming_declaration is view-
specific.

Would be a C-Test, but as there are no
aspects that can be used on a
renaming declaration, this is useless to
test.

(27/3) StaticSem 7 An aspect specified on a type applies to all views of the type.

2

4

(28/4) StaticSem Portion

(29/3) StaticSem Subpart

(30/3) StaticSem Subpart

(31/3) StaticSem Subpart

(32/4) 1 StaticSem Subpart

2 Subpart Test for each individual aspect.

3 Subpart Test for each individual aspect.

4 Subpart

(33/3) StaticSem Subpart

(34/4) Deleted

(35/3) StaticSem 5

5

5

5

C-Test. Check that attributes Size,
Alignment are the same for any view,
including (package) renames and
private types. Try various kinds of
types, too. This may exist somewhere.

An aspect specified on a subtype applies to all views of the
subtype.

C-Test, but is there a way to get
another view of a subtype? A subtype
declaration makes a new subtype.

An aspect specified on a package applies to all views of the
package.

B-Test: check that a library-level
renaming of a Pure package is still a
pure package (can't be withed by a
normal package).

Lead-in for the following. Modified by
AI12-0106-1 to define the term “class-
wide aspect” and to make it clear that
the following rules can be overridden.
This requires no additional testing.

Test as part of specific aspects
(Type_Invariant'Class, Input'Class?).

Test as part of specific aspects
(Pre'Class, Post'Class).

Test as part of specific aspects (like
Size, Alignment, Address, etc.)

All such pragmas as now defined as
aspects, so tests for the individual
aspects will test this.

Added by AI12-0154-1. Test with each
individual aspect.

Just a statement that there are
additional kinds of aspects.

Moved to 13.1.1(18.1/4) as this is a
Legality Rule, it should be under that
heading.

Check that if Variable_Indexing is specified in the private part,
index notation is not supported on objects whose nominal
subtype is the (untagged) partial view.

B-Test. Note that most forms of hiding
these are illegal, we only care about
the legal ones.

Check that if Constant_Indexing is specified in the private part,
index notation is not supported on objects whose nominal
subtype is the (untagged) partial view.

B-Test. Note that most forms of hiding
these are illegal, we only care about
the legal ones.

Check that if Implict_Dereference is specified in the private
part, generalized references are not supported on objects
whose nominal subtype is the (undiscriminanted) partial view.

B-Test. Note that most forms of hiding
these are illegal, we only care about
the legal ones.

Check that if Default_Iterator and Iterator_Element is specified
in the private part, component element iterators are not
supported on objects whose nominal subtype is the
(untagged) partial view.

B-Test. Note that most forms of hiding
these are illegal, we only care about
the legal ones.

(36/3) StaticSem Not Testable

(37/3) Dynamic 8

(38/3) Impl-Def Not Testable

A permission to override these rules;
test for any specific aspects that do so.

Check that aspect_definitions are evaluated at the freezing
point of the associated entity, not at the point of the
aspect_specification.

C-Test. Try aspects that can have
dynamic values, like Storage_Pool and
Storage_Size.

This is a permission to support other
sorts of aspects, even with different
syntax.

Paragraphs: Objectives with tests: Total objectives:

1 44 21 69 83 0

Must be tested Objectives with Priority 10 0

Objectives with Priority 9 0

Important to test Objectives with Priority 8 1

Objectives with Priority 7 1

Valuable to test Objectives with Priority 6 26

Objectives with Priority 5 13

Ought to be tested Objectives with Priority 4 17

Objectives with Priority 3 7

Worth testing Objectives with Priority 2 1

Not worth testing Objectives with Priority 1 3

Total: 69

21

 Completely: 14

Objectives
to test:

Objectives with
submitted tests:

Objectives covered by new
tests since ACATS 2.6

	Objectives

