
Coverage for ISO/IEC 8652:2012 and subsequent corrections in ACATS 3.x and 4.x
Clauses 8.3.1-8.5.3

Objective's Submitted tests

Clause Para. Lines Kind Subkind Notes Tests New Priority Objective Text Objective notes (will need work).

8.3.1 (1/2) General

(2/2) Syntax

(3/3) Legality Part 2

B831001 Part 5 C-Test. Only tested error cases.

B831001 Part 4 C-Test. Only tested error cases.

Added by Ada 2012, AI05-0177-1. C831001 All

(4/2) Legality Subpart

Negative B831001 All

(5/2) Legality Subpart

Negative B831002 All

Negative B831003 All

(6/2) Legality Subpart

Negative B831002 All B-Test.

B831003 All

(7/2) Legality B831004 Part 6 Still need a C-Test.

Negative All

A Key to Kinds and subkinds is found on the sheet named Key. Tests new to ACATS 3.0 are shown in bold; ACATS 3.1 in bold italic; ACATS 4.0 in blue bold; ACATS 4.1 in blue bold italic. ACATS 4.2 in green bold italic.

B831001, C831001

Check that an overriding indicator can be given on an abstract
subprogram declaration, a null procedure declaration, and an
ordinary (non-protected) subprogram declaration.

C-Test. Still need to try abstract operation
in a C-Test, but it isn't very likely to get
wrong. Possibly do this in an interface
test.

Check that an overriding indicator can be given on an
subprogram body, subprogram body stub, and a subprogram
renaming declaration.

Check that an overriding indicator can be given on a generic
instantiation of a subprogram.

Check that an overriding indicator can be given on an
expression function.

Any overriding indicator C-Test will test
this.

Check that an operation with an overriding indicator is illegal if
it is not a primitive operation for some type.

Any overriding indicator C-Test will test
this.

Check that an operation with an indicator of overriding is
illegal if it does not override a homograph at the place of
the declaration or body.

Check that an operation with an indicator of overriding is
illegal if it does not override a homograph at the place of
the declaration or body even though the operation is
overridden later.

Any overriding indicator C-Test will test
this.

Check that an operation with an indicator of not overriding
is illegal if it overrides a homograph at the place of the
declaration or body.

Check that an operation with an indicator of not overriding
is illegal if it overrides a homograph even if the
operation is overridden later.

B-Test. Try types where operations are
revealed at multiple places.

Check that overriding indicators can be used on operations
primitive for a type derived from a generic formal type.

Instances are not relevant for this
objective.

B831004 (specifications),
B831005 (bodies)

Check that an operation with the indicator of overriding is
illegal if it is primitive for a type derived from a generic formal
type and the operation does not inherit a homograph.

Negative All

(8/2) NonNormative A note

(9/2) NonNormative Start of examples...

(10/2) NonNormative

(11/2) NonNormative

(12/2) NonNormative

(13/2) NonNormative

(14/2) NonNormative

(15/2) NonNormative

(16/2) NonNormative End of examples.

8.4 (1) Redundant

(2) Syntax

(3) Syntax

(4/3) Syntax

Negative B840001

(5/2) Legality Any legal use clause.

Negative All

Negative All

Negative B840002 All

4 C-Test.

(6) StaticSem CA1108A, CA13001 2

Instances are relevant for this
objective, checks on instantiation are
needed.

B831004 (specifications),
B831005 (bodies)

Check that an operation with the indicator of not overriding is
illegal if it is primitive for a type derived from a generic formal
type and the operation inherits a homograph in either the
generic or the instance.

Note that this cannot be checked in
private parts, as 12.3(18) says that such
operations are not overriding in an
instance even though they would normally
be overriding.

All added by Ada 2012, AI05-0150-1.

Subtype_Mark needs an explicit check
for subtypedness.

Check that the name in a use type clause cannot denote
anything other than a subtype.

Widely
Used

B84001A (task decl, subp
decl), B840002 (record
type, protected type, record
object)

Check that the name in a use package clause cannot denote
anything other than a package.

BC1012A (nested in
subprogram), B840002
(context clause)

Check that the name in a use package clause cannot denote a
generic package.

Check that the name in a use package clause cannot denote
the limited view of a package.

After AARM 5.a. This really ought to be
tested in 12.7, but as we don't have
objectives for that yet, we'll put it here
to ensure it doesn't get missed.

Check that the name in a use package clause can denote a
formal package.

Context clause visibility is tested in
10.1.6, we don't test that use clauses
don't apply in a context clause here.

Check that a use clause given in a context clause of a
specification applies to the body and subunits as well as the
specification.

C-Test. Try a use type clause and a use
all type clause.

3 C-Test. Try both use and use [all] type.

4

Negative 5

(7) StaticSem C84008A 2

3

4

2 C-Test.

3

Negative B84007A 2 Check that a use clause does not apply before its declaration.

Negative B840001 (use type) 4 B-Test. Try a use package clause.

Negative B84008B

(7.1/2) Definitions named

(8/3) Definitions potentially use visible

1 4 C-Test.

Negative 3 B-Test.

2 6

Negative B840001 2

Negative B840001

Negative C840001

3 Lead-in Added by Ada 2012, AI05-0150-1.

(8.1/3) Added by Ada 2012, AI05-0150-1. C840002 All

Negative B840003 All

Check that a use clause given in a context clause of a body
applies to the any subunits as well as the body.

Check that a use clause given in a context clause of a library
package specification applies to child units.

C-Test. Try both use and use [all] type.
Don’t forget the child unit body.

Check that a use clause given in a context clause of a library
package specification P does not apply in any units that
mention P in a context clause..

B-Test: Try both use package and use
type, also use all type. Try withing P in
specifications, bodies, and stubs, also
check in bodies where P is given on the
spec, and in stubs where P is given on the
body.

Check that a use clause in the visible part of a package
specification applies to the body and any subunits as well.

C-Test. Try a use type clause (also use all
type).

Check that a use clause in the private part of a package
specification applies to the body and any subunits as well.

C-Test. Try both a use package and use
[all] type clause.

Check that a use clause in the visible part of a package
specification applies to any child units.

C-Test. Try both a use package and use
[all] type clause. Don't forget the child unit
body.

Check that a use clause in a body applies to any subunits as
well.

B840001 (use type only, no
bodies)

Check that a use clause in the private part of a package
specification applies to all of private child units, and the private
part and body of public child units.

C-Test. Try both a use package and use
[all] type clause. Don't forget the child unit
body.

B-Test. Try a use type clause (also use all
type).

Check that a use clause given in the private part of a package
does not include the public part of a public child unit.

Check that a use package clause for package P does not
make items visible that were visible in P due to a use clause in
P's visible part.

Check that a use package clause for a library package makes
any withed child units directly visible.

Check that a use package clause does not make entities
declared in nested packages directly visible.

Check that a use type clause on a class-wide type T'Class
makes the primitive operators of type T directly visible.

C-Test. Important for "=" (other operators
are less likely).

Check that a use type clause does not make primitive
subprograms of the appropriate type that are named with
identifiers directly visible.

B-Test. Check that enumeration literals
are not made visible, as well as functions
with arguments.

Check that a use type clause does not make primitive
operators for other types visible.

Check that a use type clause does not make non-primitive
operators declared in the package where the named subtype
is declared directly visible.

Check that a use all type clause makes primitive subprograms
of the appropriate type directly visible.

Check that a use all type clause does not make non-primitive
subprograms declared in the package where the named
subtype is declared directly visible.

(8.2/3) Added by Ada 2012, AI05-0150-1. C840002 All

Negative B840003 All

(8.3/3) Definitions

(9) StaticSem Portion Lead-in for following bullets.

(10) StaticSem Subpart Any legal use clause.

Negative 2

Negative 3

(11) StaticSem Subpart Any legal use clause.

C84005A

C84009A (use package) 1

Negative B84004A, B84006A

(12) Dynamic

(13) NonNormative Start of examples...

(14) NonNormative

(15) NonNormative

(16) NonNormative ...end of examples.

8.5 (1) Redundant

(2) Syntax

(3) 1 Dynamic 3 C-Test.

4 C-Test.

3

2 Redundant

(4) NonNormative Start of examples...

Check that a use all type clause of a specific tagged type
makes appropriate class-wide operations directly visible.

Check that a use all type clause of a specific tagged type T
does not make operations of T'Class directly visible unless
they are declared in the same package as T or an ancestor of
T.

Others kinds of “use-visible”; tested in
12.6, added by AI05-0131-1.

C84002A (proc declared
later)

Check that a use package clause does not make an entity
visible within the immediate scope of a homograph.

C-Test: try operations declared before the
use clause and operators.

Check that a use type clause does not make an operator
visible within the immediate scope of a homograph.

C-Test: it's necessary to check which
operator is executed.

Check that a use package clause can make overloaded
subprograms with the same identifier visible, and that they can
be resolved.

Check that a use clause can make overloaded operators
visible.

C-Test: use type clauses. (But unlikely to
be wrong)

Check that multiple declarations with the same identifier that
are not overloadable are not made directly visible by one or
more use clauses.

This can happen only for use package;
operators are always overloadable.

Not
Testable

Can't tell "no effect" from forgetting to
execute it; can't guess random wrong
effects.

Can't test this for exceptions,
packages, or generics, because their
names have no dynamic component.

Check that the name in an object renaming is evaluated each
time it is elaborated.

Check that the name in an object renaming is evaluated and
needed index and access checks are performed.

Check that the name in a subprogram renaming is evaluated
and needed index and access checks are performed.

C-Test: try renaming access-to-
subprogram objects stored in arrays or
heap-allocated objects.

(5) NonNormative

(6) NonNormative

(7) NonNormative ...end of examples.

8.5.1 (1) Redundant

(2/3) Syntax Aspect_clauses added by Ada 2012.

(3/2) 1 NameRes 7 C-Test.

Negative B85001H 7

2 Rule confirmed by AI05-0105-1. C851002 All

Negative B851002 All

3 Rule confirmed by AI05-0105-1. C851002 All

Negative B851003 All

(4)

Negative

B85001G (attrib) 4 Check that an object renaming cannot rename a value.

B85001F

(4.1/2) Portion

(4.2/2) 5

This is likely to be a common mistake,
so it is tested.

B85001I, B85001J,
B85001K, B85001M

Check that the subtype_mark in a renaming declaration
cannot be replaced by a subtype_indication.

For an object renaming with a subtype_mark, check that the
name is resolved if there is only one interpretation with the
correct type, even if other interpretations exist.

For an object renaming with a subtype_mark, check that the
name is illegal if it does not resolve to the appropriate type.

B-Test. Make sure that X : T; Y : T'Class
renames X is tested.

BY30001
(contains named
access cases)

For an object renaming with an anonymous access-to-object
type, check that the name is resolved if there is only one
interpretation with a correct anonymous access type, even if
other interpretations exist.

For an object renaming with an anonymous access-to-object
type, check that the name is illegal if it does not resolve to an
anonymous access type with the appropriate designated type.

For an object renaming with an anonymous access-to-
subprogram, check that the name is resolved if there is only
one interpretation with a correct anonymous access type, even
if other interpretations exist.

For an object renaming with an anonymous access-to-
subprogram type, check that the name is illegal if it does not
resolve to an anonymous access type with the appropriate
designated profile.

Widely
Used

B85001A, B85001B,
B85001C, B85001D,
B85001E

Check that an object renaming cannot rename a literal or
aggregate.

B-Test. Check named numbers, other
attributes. (Enumeration literals tested by
B85001F.)

Check that an object renaming cannot rename something that
is not an object.

This is the lead-in for the following
rules.

Check that an object renaming with an anonymous access-to-
object type can rename an object with the same kind of
anonymous access-to-object.

C-Test. Two cases in the next objective's
test (C851001).

CY30001 (three
cases), CY30002
(two cases).

C851001 All

Negative B851002 All

B851002 All

(4.3/2) 5 C-Test. A single case in C851001.

B851003 All

(4.4/2) Portion

(4.5/2) Subpart

Negative Part 6

Part 6

(4.6/2) 1 Subpart Any renaming with a null_exclusion.

Negative B851004 All

B851004 All

2 B851004 All

B851004 All

Check that an object renaming with an anonymous access-to-
object type with no null exclusion can rename an object with
an anonymous access-to-object with a matching designated
subtype and a null exclusion.

For an object renaming with an anonymous access-to-object
type, check that the renaming is illegal if the designated
subtypes don't statically match.

For an object renaming with an anonymous access-to-object
type, check that the renaming is illegal if one of the types is
access-to-constant and the other is access-to-variable.

Check that an object renaming with an anonymous access-to-
subprogram type can rename an object with the same kind of
anonymous access-to-subprogram.

For an object renaming with an anonymous access-to-object
type, check that the renaming is illegal if the designated
profiles are not subtype conformant.

This is the lead-in for the following
rules.

Any renaming of a formal object in a
generic body.

B851004 (simple cases)

For an object renaming with a null_exclusion given in a
generic body that names a formal object of the generic or a
parent unit of the generic, check that the renaming is illegal if
the formal object does not have a null_exclusion.

B-Test. Be sure to check bodies of nested
and child generics as well the body of the
generic. Especially try cases that would
otherwise be legal (the formal object
having a null excluding subtype).

B851004 (simple cases)

For an object renaming with an access_definition with a
null_exclusion given in a generic body that names a formal
object of the generic or a parent unit of the generic, check that
the renaming is illegal if the formal object does not have a
null_exclusion.

B-Test. Be sure to check bodies of nested
and child generics as well the body of the
generic. Especially try cases that would
otherwise be legal (the formal object
having a null excluding subtype).

For an object renaming with a null_exclusion, check that the
renaming is illegal if the subtype of the renamed object does
not exclude null.

For an object renaming with an access_definition with a
null_exclusion, check that the renaming is illegal if the subtype
of the renamed object does not exclude null.

For an object renaming with a null_exclusion that renames a
formal object in a generic package specification, check that an
instance is illegal if the subtype of the actual object does not
exclude null.

For an object renaming with an access_definition with a
null_exclusion that renames a formal object in a generic
package specification, check that an instance is illegal if the
subtype of the actual object does not exclude null.

(5/3) 1 This rule was revised by AI05-0008. 9

Negative 9

2 7

Negative 7

3 B851001 (definite) 7

(6/2) 6 C-Test. Try discriminant constraints.

C851001 All

B85004A 6 Check that a renamed constant still is treated as a constant.

B3A2015 (definite, deref of
general access), B851001
(generic body rule for
formal derived), B85002A
(definite, variant), B85003A
(definite, variant, formal in
out), B85003B (definite,
formal in out)

Check that a renamed object is not a subcomponent that
depends on discriminants of an object whose nominal subtype
is unconstrained unless the object is known to be constrained.

B-Test. Check that the object being a
constant (via a dereference of an access-
to-constant) does not necessarily make it
known-to-be-constrained. Check that
pool-specific types are excluded if they
have a constrained partial view. Check the
special rules in generic bodies (formal
access, formal private).

Check that a renamed object can be a subcomponent that
depends on discriminants of an object whose nominal subtype
is unconstrained and which is known to be constrained.

C-Test. Be sure to check all of the cases
for known-to-be-constrained. Check
immutably limited types, indefinite types,
parts of constants other than deref of
access-to-constants.

Check that a slice is not renamed if it is a slice of a
subcomponent that depends on discriminants of an object
whose nominal subtype is unconstrained and which is not
known to be constrained.

B-Test. Be sure to check all of the cases
that aren't known-to-be-constrained
(definite, deref of general access inc.
access-to-constant, deref of pool-specific
with constrained partial view). Check
special formal body cases.

Check that a slice can be renamed if it is a slice of a
subcomponent that depends on discriminants of an object
whose nominal subtype is unconstrained and which is known
to be constrained.

C-Test. Be sure to check all of the cases
for known-to-be-constrained. Check
immutably limited types, indefinite types,
parts of constants other than deref of
access-to-constants.

For a renamed object in a generic unit that is a subcomponent
that depends on discriminants of an object, check that an
instance is illegal if the object's nominal subtype is
unconstrained and the object is not known to be constrained.

B-Test. Check deref of access-to-formal;
check formal private types.

C85005G (range
constraints), C85006G
(index constraints)

Check that the constraints of a renamed object are those of
the renamed object, not those given in the renaming
declaration.

Check that when renaming an object that excludes null, the
renamed object still excludes null even if the
renaming_declaration does not include a null_exclusion.

B-Test. Check function results,
dereferences of access-to-constant types
(named and anonymous), constant
extended return statements, selected and
indexed components of a constant.

Check that a renamed variable can be assigned to.

B85004B Check that a renamed object has the correct value.

B85005F (access deref)

(7) NonNormative Start of examples...

(8) NonNormative ...end of examples.

8.5.2 (1) Redundant

(2/3) Syntax Aspect_clauses added by Ada 2012.

(3) Legality Subpart Any legal exception renaming.

Negative 3

(4) StaticSem C85009A 4

(5) NonNormative Start of example...

(6) NonNormative ...end of example.

8.5.3 (1) Redundant

(2/3) Syntax Aspect_clauses added by Ada 2012.

(3) Legality Subpart Any legal package renaming

Negative 7

B85005A (obj dec),
B85005B, B85005C (in out
param), B85005D (generic
in out), B85005E
(allocator), B85006A (comp
or slice of obj dec),
B85006B, B85006C (comp
or slice of in out param),
B85006D (comp or slice of
generic in out), B85006E
(comp or slice of allocator),
B85006F (slice of slice),
B85007E (out param)

Check that the renamed object remains the same even if the
name that it renames changes to designate a different object.

C-Test. Try renaming an array item, and
changing the index value.

B85008F, B85008G,
B85008H

Check that the renamed entity of an exception renaming
declaration denotes an exception.

B-Test. Check protected units, and
various types: task, protected, decimal,
float, fixed, integer, modular, record,
array, private, interface.

Check that a renamed exception can be used anywhere that
an exception can be used.

C-Test. Try in raise with message and as
the prefix of 'Identity.

B85010A, B85010B
(literals)

Check that the renamed entity of a package renaming
declaration denotes a package.

B-Test. Try renaming a generic package,
a task unit, a protected unit, an object
declaration (of a task unit?), a parameter,
a block label, a loop label, and various
kinds of types (enum, integer, modular,
fixed, decimal, float, array, record, private,
interface). Note that all important cases
are not currently tested.

(3.1/2) Legality 8

Negative 8 B-Test.

(4) B85011A

(4.1/2) Redundant This is formally defined in 8.3.

(5) NonNormative Start of example...

(6) NonNormative ...end of example.

Check that a limited view of a package can be renamed as a
package, and that it can be used in it's immediate scope and
within the scope of a with clause for the package.

C-Test. Note: AdaCore submitted test
thinks this is illegal, so the priority was
raised a bit.

Check that the name of a renamed limited view of a package
cannot be used outside of the scope of a with clause for the
package or the immediate scope of the renaming.

Check that a renamed package name can be used in the
same ways as a normal package name.

Paragraphs: Objectives with tests: Total objectives:

6 71 64 45 86 2

Must be tested Objectives with Priority 10 0

Objectives with Priority 9 2

Important to test Objectives with Priority 8 2

Objectives with Priority 7 6

Valuable to test Objectives with Priority 6 6

Objectives with Priority 5 4

Ought to be tested Objectives with Priority 4 9

Objectives with Priority 3 8

Worth testing Objectives with Priority 2 7

Not worth testing Objectives with Priority 1 1

Total: 45

34

 Completely: 28

Objectives
to test:

Objectives with
submitted tests:

Objectives covered by new
tests since ACATS 2.6

	Objectives

