
Coverage for ISO/IEC 8652:2012 and subsequent corrections in ACATS 3.x and 4.x
Subclause B.3.3

Objective's Submitted tests

Clause Para. Lines Kind Subkind Notes Tests New Priority Objective Text Objective notes (will need work).

B.3.3 (1/3) General

(2/3) Deleted

(3/3) Deleted

(3.1/3) StaticSem Portion Lead-in for next paragraph.

(3.2/3) 1 StaticSem All

Negative BXB3004 All

Negative BXB3004 All

Negative BXB3004 All

Negative BXB3004 All

6

Negative BXB3004 All

2 Negative BXB3004 All

3

(4/3) Deleted

(5/3) Deleted

(6/3) 1 Definitions “unchecked union type”

2 Definitions “unchecked union subtype”

3 Definitions “unchecked union object”

(7/2) Legality All

(8/2) Legality BXB3001, CXB3019 All

Negative BXB3001 All

A Key to Kinds and subkinds is found on the sheet named Key. Tests new to ACATS 3.0 are shown in bold; ACATS 3.1 in bold italic; ACATS 4.0 in blue bold; ACATS 4.1 in blue bold italic. ACATS 4.2 in green bold italic.

CXB3019, CXB3023
(pragma), CXB3024
(aspect)

Check that aspect Unchecked_Union can be specified for a
discriminated record type with a variant part.

Check that aspect Unchecked_Union cannot be specified for a
non-record type.

Check that aspect Unchecked_Union cannot be specified for a
record type that has no discriminants.

Check that aspect Unchecked_Union cannot be specified for a
discriminated record type that does not have a variant part.

Check that aspect Unchecked_Union cannot be specified for a
derived record type whose parent type has primitive
operations.

Check that aspect Unchecked_Union can be specified with a
static expression of type Boolean, and that expression can
have parts that are imported from other units.

C-Test. Could be similar to test CA21002.
Also should consider testing with a
constant declared after the type (but
before the freezing point).

Check that aspect Unchecked_Union cannot specified with an
expression of a type other than Boolean.

Check that aspect Unchecked_Union cannot be specified with
a non-static Boolean expression.

Widely
Used

Any type not using Unchecked_Union
tests this.

Note: The negative is untestable, since
an implementation can define all types
to be C-compatible if it wants.

CXB3019, CXB3023
(pragma), CXB3024
(aspect)

Check that aspect Unchecked_Union can be specified if all of
the components are C-Compatible.

Check that a component of an unchecked union can be
another unchecked union that depends on the original union's
discriminant.

Check that an Unchecked_Union is illegal if there is any
component that is not an unchecked union and whose
constraint depends on a discriminant.

(9/3) Legality BXB3001, CXB3019 All

Negative BXB3002 All

Negative BXB3002 All

1 C-Test.

(10/3) Legality 7

5

7 B-Test. Don't forget generic children.

(11/2) Legality BXB3003 All

BXB3003 All

(12/2) Legality 5

5

5

5

Negative 7 B-Test.

Negative 7 B-Test.

Check that a discriminant of an unchecked union can be used
to control a variant of the record type, or in a discriminant
constraint of another unchecked union.

Check that the name of a discriminant of an unchecked union
cannot be used outside of the type declaration.

Check that the name of a discriminant of an unchecked union
cannot be used in a record representation clause for the type.

From AI12-0174-1; post-Corrigendum
so wait on any test for the next
document.

Check that the name of a discriminant of an unchecked union
can be used as a component name in an aggregate.

Could use a
version of
CXB3024 (without
the C code) to
check that [that
was the original
problem].

Check that a component of a variant of an unchecked union
cannot need finalization.

B-Test. But could have a different error if
it is impossible to declare a C-compatible
type that needs finalization. Allow that as
an error.

Check that if the type of a component of a variant of an
unchecked union declared in a generic specification is a
generic formal type, the actual type corresponding to that
formal type cannot need finalization.

B-Test. But could have a different error if
it is impossible to declare a C-compatible
type that needs finalization. Allow that as
an error.

Check that type of a component of a variant of an unchecked
union declared in a generic body cannot be a generic formal
private type or private extension.

Check that the completion of an incomplete type with a
discriminant part cannot be an unchecked union type.

Check that the full type of a private type with a known
discriminant part cannot be an unchecked union type.

Check that an unchecked union type can be the actual for a
generic formal private type without discriminants.

C-Test. All of the components have to
either have Convention C, or be declared
in one of the C interface packages.

Check that an unchecked union type can be the actual for a
generic formal private type with unknown discriminants.

C-Test. All of the components have to
either have Convention C, or be declared
in one of the C interface packages.

Check that an unchecked union type can be the actual for a
generic formal derived type whose ancestor does not have
discriminants.

C-Test. All of the components have to
either have Convention C, or be declared
in one of the C interface packages.

Check that an unchecked union type can be the actual for a
generic formal derived type whose ancestor is an unchecked
union type.

C-Test. All of the components have to
either have Convention C, or be declared
in one of the C interface packages.

Check that an unchecked union type cannot be the actual for a
generic formal private type with a known discriminant part.

Check that an unchecked union type cannot be the actual for a
generic formal derived type whose ancestor has discriminants
and is not an unchecked union type.

(13/2) StaticSem All Check that an unchecked union type can have convention C.

(14/2) StaticSem

(15/2) StaticSem 4

(16/2) StaticSem

(17/2) StaticSem See above.

(18/2) StaticSem See above.

(19/2) StaticSem See above.

(20/2) Definitions “inferable discriminants”

(21/2) Definitions

(22/2) Dynamic Portion Lead-in for the following rules.

(23/2) Dynamic Part 4

5

(24/2) Dynamic CXB3020 All

(25/2) Dynamic CXB3021 All

Revised by AI12-0162-1 (not in TC1). 1

(26/2) Dynamic CXB3022 All

CXB3019, CXB3023
(pragma), CXB3024
(aspect)

Put a usage-oriented test here (it doesn't
have a natural objective).

Not
Testable

Could check that objects do have the
same size, but that would require
guessing the circumstances where a
compiler would not make that true (it
would be true for variants on most
compilers anyway).

Check that the size of the discriminants of an unchecked
union object is zero.

C-Test. Not very important as a direct
test.

Not
Testable

Suppression is a permission; in
particular, a compiler can make one of
these checks if it can do so without
reading the discriminant value (for
instance, if it can infer the value).
Therefore, this can't be tested.

Not
Testable

Not
Testable

Not
Testable

“expression with inferable
discriminants”

CXB3019, CXB3023
(pragma), CXB3024
(aspect)

Check that Program_Error is raised by the predefined equality
operator for an unchecked union type if either operand does
not have inferable discriminants.

C-Test. Try examples in an individual
membership test.

Check that Program_Error is not raised by an equality
operation for an unchecked union type if the type has a user-
defined primitive equality operation.

C-Test. Try explicit uses of equality, as
well as those in a composed equality and
in an individual membership test.

Check that Program_Error is raised by the predefined equality
operator for any type that has a subcomponent of an
unchecked union type whose nominal subtype is
unconstrained.

Check that Program_Error is raised by a membership test if a
subtype_mark denotes a constrained unchecked union
subtype and the expression lacks inferable discriminants.

Check that Program_Error is raised by an individual
membership test of a membership with multiple choices if a
subtype_mark denotes a constrained unchecked union
subtype and the tested simple expression lacks inferable
discriminants.

C-Test. Possibly combine with the
missing parts of tests for B.3.3(23/2).
Must wait until next document is
immenent before testing, then higher
priority.

Check that Program_Error is raised by the conversion from a
derived unchecked union type to an unconstrained non-
unchecked-union type if the operand of the conversion lacks
inferable discriminants.

(27/2) Dynamic 7

(28/2) Dynamic 7

(29/3) Deleted

(30/2) NonNormative Part of a note.

(31/3) NonNormative Part of a note.

(32/2) NonNormative Part of a note.

Check that Program_Error is raised by the default
implementation of the Write or Read attribute of an unchecked
union type.

C-Test. All of the components have to
either have Convention C, or be declared
in one of the C interface packages.

Check that Program_Error is raised by the default
implementation of the Output or Input attribute of an
unchecked union type if the type lacks default discriminant
values.

C-Test. All of the components have to
either have Convention C, or be declared
in one of the C interface packages.

Paragraphs: Objectives with tests: Total objectives:

1 34 20 17 36 1

Must be tested Objectives with Priority 10 0

Objectives with Priority 9 0

Important to test Objectives with Priority 8 0

Objectives with Priority 7 6

Valuable to test Objectives with Priority 6 1

Objectives with Priority 5 6

Ought to be tested Objectives with Priority 4 2

Objectives with Priority 3 0

Worth testing Objectives with Priority 2 0

Not worth testing Objectives with Priority 1 2

Total: 17

20

 Completely: 19

Objectives
to test:

Objectives with
submitted tests:

Objectives covered by new
tests since ACATS 2.6

	Objectives

