
Coverage for ISO/IEC 8652:2012 and subsequent corrections in ACATS 3.x and 4.x
Clauses 7.3.2-7.6.1

Objective's Submitted tests

Clause Para. Lines Kind Subkind Notes Tests New Priority Objective Text Objective notes (will need work).

7.3.2 (1/4) StaticSem Portion Modified by Corrigendum AI12-0041-1.

(2/3) StaticSem All

All

All

B732C01 Part 7

Negative B732C01 All

Negative B732C01 All

Negative B732C01 All

Negative B732C01 All

Negative B732C01 All

(3/4) 1 StaticSem Definition “Invariant expression”

2 B732C02, C732002 All

B732C02 Part 7

Added by AI12-0041-1. B732C02 Part 7

Negative B732C02 All

Negative B732C02 All

B732C02 All

B732C02 All

3 Definition

(4/3) NameRes B732001 Part 1

A Key to Kinds and subkinds is found on the sheet named Key. Tests new to ACATS 3.0 are shown in bold; ACATS 3.1 in bold italic; ACATS 4.0 in blue bold; ACATS 4.1 in blue bold italic. ACATS 4.2 in green bold italic.

B732C01, C732A01
(actually F732A00)

Check that Type_Invariant can be specified for a
private_type_declaration.

B732C01, C732001,
C732002

Check that Type_Invariant can be specified for a
private_extension_declaration.

B732C01, C732C01
(actually F732C00)

Check that aspect Type_Invariant can be specified on the
full_type_declaration that completes a
private_type_declaration.

Check that aspect Type_Invariant can be specified on the
full_type_declaration that completes a
private_extension_declaration.

C-Test. Probably can be part of another
test. The B-Test does the declaration but
doesn't run it.

Check that aspect Type_Invariant cannot be specified on an
interface type.

Check that aspect Type_Invariant cannot be specified on a
record type that doesn't have a partial view.

Check that aspect Type_Invariant cannot be specified on array
types or elementary types.

Check that aspect Type_Invariant cannot be specified on a
subtype.

Check that aspect Type_Invariant can only be specified on
type declarations.

Check that aspect Type_Invariant'Class can be specified on a
(tagged) private_type_declaration.

Check that aspect Type_Invariant'Class can be specified on a
private_type_extension.

C-Test. Probably can be part of another
test. The B-Test does the declaration but
doesn't run it.

Check that aspect Type_Invariant'Class can be specified on
an interface declaration.

C-Test. Note that this can be anywhere,
not just in a package specification. B-Test
doesn't execute, of course.

Check that aspect Type_Invariant'Class cannot be specified
on the completion of a private type or private extension.

Note: Untagged illegal cases are
covered by (6/3), line 1, below.

Check that aspect Type_Invariant'Class cannot be specified
on a tagged record type.

Check that aspect Type_Invariant'Class cannot be specified
on a subtype.

Check that aspect Type_Invariant'Class can only be specified
on types.

Added by AI12-0150-1, “class-wide
type invariant”.

Check that the expression for an aspect Type_Invariant can
be of any boolean type.

C-Test. But this is highly unlikely in
practice, and we have an existence test in
the B-Test.

4

4

4

Negative B732001 All Could try more cases, but hardly worth it.

5

(5/4) 1 Redundant

2 NameRes 4

3 NameRes 4

Negative 7

4 Redundant

(6/3) 1 Redundant B732C02 All

B732C02 All

2 Legality B732001 All

Negative 5 C-Test.

(6.1/4) Rule added by AI12-0042-1. 6

(7/3) Redundant Definition

Check that the expression for an aspect Type_Invariant'Class
can be of any boolean type.

C-Test. Try some non-Boolean boolean
types. (But a B-Test OK line is probably
good enough.)

Check that the expression for an aspect Type_Invariant can
be resolved with the knowledge that it is of any boolean type.

C-Test; try cases with overloaded function
calls defined for Boolean and some other
type. Not very important as it's normal
resolution.

Check that the expression for an aspect Type_Invariant'Class
can be resolved with the knowledge that it is of any boolean
type.

C-Test; try cases with overloaded function
calls defined for Boolean and some other
type. Not very important as it's normal
resolution.

Check that the expression for an aspect Type_Invariant
cannot have a non-boolean type.

Check that the expression for an aspect Type_Invariant'Class
cannot have a non-boolean type.

B-Test. Not very important, because it's
pretty obvious – but easy to check.

Widely
used

Given elsewhere, but any realistic
invariant expression will test.

Replaced by AI12-0150-1. The non-
overloaded case is “Widely-Used”; any
type invariant expression will test it.

Check that the type of the current instance in a invariant
expression for aspect Type_Invariant for type T resolves to T.

C-Test. Check that overloaded calls can
be resolved with the knowledge that the
type is T. Not very important, this is just
normal resolution.

New by AI12-0150-1. Non-overloaded
cases are “Widely-Used”; any class-
wide type invariant expression will test
it.

Check that the type of the current instance in a invariant
expression for aspect Type_Invariant'Class for type T
effectively resolves to T for primitive operations.

C-Test. Check that overloaded calls can
be resolved with the knowledge that the
type is T. Not very important, this is just
normal resolution.

Check that the type of the current instance in a class-wide type
invariant expression for type T does not resolve to type T or
T'Class for objects or non-primitive operations.

B-Test. Try the Baird cases described in
AI12-0113-1. Try class-wide objects
declared with the type. Try non-primitive
operations. (Anything else not inherited by
descendants??)

Sentence 5 was removed by AI12-
0159-1.

Given elsewhere, but we'll still test it
here so we're sure that it is properly
tested. (13.1.1 is the general definition
of aspect specifications, it's unlikely
that all of the possibilities will be
checked there.)

Check that aspect Type_Invariant'Class cannot be specified
on an untagged private type.

Check that aspect Type_Invariant'Class cannot be specified
on an untagged type.

Check that aspect Type_Invariant cannot be specified on an
abstract type.

Check that aspect Type_Invariant'Class can be specified on
an abstract type.

Check that an inherited private operation for a type with a
class-wide invariant requires overriding or is abstract.

B-Test. Get examples from AI12-0042-1.
(Might be able to use one of existing
foundations here.)

This is also widely used; any Invariant
will check.

(8/3) Redundant Definition Part 8

(9/4) Dynamic Portion

Negative 8

(10/4) Dynamic Modified by Corrigendum AI12-0133-1. Part 7

Part 7

(10.1/4) Added by AI12-0049-1 8

(11/3) Dynamic 8

(12/3) Dynamic Portion Long lead-in for following bullets.

(13/3) Dynamic Part 5

(14/3) Dynamic Part 5

We have an objective here, as this may
not come up in other tests (even
through it is the intended use).

C732002 (private
extension)

Check that if aspect Type_Invariant'Class is specified for type
T, it also is checked for a type NT extended from T, even if
that type is not a private type.

C-Test. Check for all kinds of extensions.
Possibly define a foundation for this sort
of test (the invariant would be a primitive
boolean function which could be
overridden).

Introductory text, tested below. Revised
by AI12-0150-1.

Check that no type invariant checks are performed if the type
is abstract.

C-Test. Use routines that are abstract in
the type invariant, as well as concrete
routines that are overridden for
descendants. Ensure that the overridden
routines are not called for any inherited or
overridden routines for a type descended
from the abstract root type. (Could also try
an abstract type in the middle of a
hierarchy.)

C732A01 (specific
invariant, whole stand-
alone object), C732A02
(specific invariant,
components/aggregates),
C732B01 (specific
invariant, whole stand-
alone object)

Check that an invariant check is applied to a default-initialized
object of a type T to which invariant expressions apply, no
matter where it is declared, unless the partial view of T has
unknown discriminants.

C-Test. Be sure to try such an object
within the defining package. Must check
cases where the invariant check fails for
an enabled expression, of course. Still
need class-wide invariants both for full
objects and for default-initialized
components (both in object decls and in
aggregates).

C732C01 (specific
invariant, whole stand-
alone object)

Check that an invariant check is never applied to a default-
initialized object of a type T to which invariant expressions
apply whose partial view has unknown discriminants.

C-Test. Only can use within the defining
package. Must check cases where the
invariant check fails for an enabled
expression, of course. Still need class-
wide invariants, and uses of default-
initialized components (both in object
decls and in aggregates).

Check that an invariant check is applied to a deferred constant
with a part of a type T to which invariant expressions apply.

C-Test. Check cases where the invariant
check fails for an enabled expression. Try
both specific and class-wide invariants.
Don't forget parts.

Check that an invariant check is applied to the result of a type
conversion to T, where T is a type to which invariant
expressions apply.

C-Test. Check cases where the invariant
check fails for an enabled expression. Try
both specific and class-wide invariants.
No parts here.

C732001 (specific invariant,
direct conversion)

Check that when assigning to a view conversion to an
ancestor of a type T to which invariant expressions apply, an
invariant check is made on the T part of the object.

C-Test. Check cases where the invariant
check fails for an enabled expression. Try
both specific and class-wide invariants, as
well as type hierarchies where the
conversion crosses an invariant (as well
as direct conversions from T).

C732001 (specific invariant,
direct conversion)

Check that when returning from a call to which a view
conversion to an ancestor of a type T to which invariant
expressions apply and which was passed as an in out or out
parameter, an invariant check is made on the T part of the
object.

C-Test. Check cases where the invariant
check fails for an enabled expression. Try
both specific and class-wide invariants, as
well as type hierarchies where the
conversion crosses an invariant (as well
as direct conversions from T).

6

4

(15/4) Dynamic 7

(16/3) Dynamic Portion Lead-in for following rules.

(17/4) Dynamic Portion

Negative 7

5

(18/4) Deleted

(19/4) Dynamic Portion Lead-in for following bullets.

(19.1/4) Dynamic Part 8

(19.2/4) Dynamic Part 7

Check that appropriate specific invariant checks are
performed upon return from a call to which a class-wide view
conversion is passed as an in out or out parameter.

C-Test. This is testing AARM note 14.c/3,
where the required checks depend on the
run-time tag of the actual object. If
possible, try to invent a case where
checking too much would fail, but
checking the correct amount would
succeed. This requires a hierarchy of at
least 3 levels.

Check that appropriate class-wide invariant checks are
performed upon return from a call to which a class-wide view
conversion is passed as an in out or out parameter.

C-Test. This is testing AARM note 14.c/3,
where the required checks depend on the
run-time tag of the actual object. If
possible, try to invent a case where
checking too much would fail, but
checking the correct amount would
succeed. This requires a hierarchy of at
least 3 levels with multiple invariants.

A presentation change in AI12-0146-1
(does not change objective).

Check that after a successful call to a Read or Input stream-
oriented attribute, an invariant check is performed on the
object initialized by the attribute.

C-Test. Check cases where the invariant
check fails for an enabled expression. Try
both specific and class-wide invariants.
No parts here.

This and the following were redone by
AI12-0042-1. Tested with the following
rules.

Check that successful return from a call on a subprogram
declared outside of the immediate scope of a type T that has
applicable invariant expressions does not check the invariant
of T.

C-Test. Check at least in out parameters
and return objects. Check cases where
the invariant check fails for an enabled
expression. Try both specific and class-
wide invariants.

Check that successful return from a call on a subprogram
declared by a generic instance where the generic unit is
outside of the immediate scope of a type T that has applicable
invariant expressions does not check the invariant of T.

C-Test. Check at least in out parameters
and return objects. Check cases where
the invariant check fails for an enabled
expression. Try both specific and class-
wide invariants. Don't forget parts.

Removed by AI12-0042-1's wording
reorganization.

C732A01 (specific
invariant, whole object),
C732A02 (specific
invariant, part of array),
C732B01 (specific
invariant, whole object)

Check that a successful return from a call on a function
declared in the immediate scope of T and visible outside of
that scope and that returns an object with a part of T in the
return object, includes an invariant check for T.

C-Test. Check cases where the invariant
check fails for an enabled expression. Still
need class-wide invariants on the whole
object, and class-wide invariants on parts.

C732A01 (specific
invariant, whole object, in
out of procedure),
C732A02 (specific
invariant, part of array, in
out of procedure),
C732002 (class-wide
invariant, whole object, in
out of procedure)

Check that a successful return from a call on a subprogram
declared in the immediate scope of T and visible outside of
that scope and that has in out or out parameters with a part of
T, includes an invariant check for T on those parameters.

C-Test. Check cases where the invariant
check fails for an enabled expression. Still
need class-wide invariants on parts, and
at least one test of in out parameters on
functions and entries.

(19.3/4) Dynamic Part 7

Part 7

(19.4/4) Dynamic 7

6

Part 4

(19.5/4) Dynamic Portion Another lead-in.

(19.6/4) Dynamic Part 5

7

C732B02 (specific
invariant, whole designated
object)

Check that a successful return from a call on a subprogram
declared in the immediate scope of T and visible outside of
that scope and that has an access-to-object parameter with a
designated type with a part of T, includes an invariant check
for T on those parameters.

C-Test. Check both named and
anonymous access type parameters.
Check cases where the invariant check
fails for an enabled expression. Still need
a specific invariant on a part, and class-
wide invariants on both whole object and
on parts.

Rule added by AI12-0149-1 (clearly
missing).

C732B02 (specific
invariant, whole designated
object)

Check that a successful return from a call on a function
declared in the immediate scope of T and visible outside of
that scope and that returns an access-to-object result with a
designated type with a part of T, includes an invariant check
for T on that result.

C-Test. Check both named and
anonymous access type parameters.
Check cases where the invariant check
fails for an enabled expression. Still need
a specific invariant on a part, and class-
wide invariants on both whole object and
on parts.

Check that a successful return from a call on a procedure
declared in the immediate scope of T and visible outside of
that scope and that has in parameters with a part of T,
includes an invariant check for T on those parameters.

C-Test. Check cases where the invariant
check fails for an enabled expression. The
parameter necessarily has some sort of
indirection involved for this to fail, and that
indirection is modified. Try both specific
and class-wide invariants. Don't forget
parts.

Check that a successful return from a call on a function
declared in the immediate scope of T and visible outside of
that scope and that has in parameters with a part of T, does
not include an invariant check for T on those parameters.

C-Test. Critically important to avoid infinite
recursion in invariant expressions. Check
cases where the invariant check fails for
an enabled expression. As above, the
parameter necessarily must have some
sort of indirection *and* a modification; not
very likely in a function. Try both specific
and class-wide invariants. Don't forget
parts.

C732A01 (specific
invariant, whole object),
C732002 (class-wide
invariant, whole object)

Check that including in an invariant a function declared in the
immediate scope of T and visible outside of that scope and
that has in parameters with a part of T, does not cause infinite
recursion.

C-Test. Check both for specific and class-
wide invariants, and for parts, and for
access types. Not that likely to be wrong,
and occurs in many tests.

We have separate objectives here to
ensure that everything is covered.

C732A01 (specific
invariant, whole object),
C732A02 (specific
invariant, part of array),
C732B01 (specific
invariant, whole object),
C732002 (class-wide
invariant, whole object, in
out parameters only)

Check that invariant checks for T are performed for
subprograms when the subprograms are declared within the
immediate scope of T and are visible outside of the immediate
scope of T, and T is a private type.

C-Test. Check at least in out parameters
and return objects. Check cases where
the invariant check fails for an enabled
expression. Still need class-wide
invariants on the whole object (returns),
and class-wide invariants on parts.

Check that invariant checks for T are performed for
subprograms when the subprograms are declared within the
immediate scope of T and override inherited operations that
are visible outside of the immediate scope of T, and T is a
private type.

C-Test. Check at least in out parameters
and return objects. Check cases where
the invariant check fails for an enabled
expression. Try both specific and class-
wide invariants. Don't forget parts.

7

7

(19.7/4) 7

7

Negative 6

Negative 6

6

Check that invariant checks for T are performed for
subprograms when the subprograms are declared within the
immediate scope of T and are visible outside of the immediate
scope of T, and T is a private extension.

C-Test. Check at least in out parameters
and return objects. Check cases where
the invariant check fails for an enabled
expression. Try both specific and class-
wide invariants. Don't forget parts.

Check that invariant checks for T are performed for
subprograms when the subprograms are declared within the
immediate scope of T and override inherited operations that
are visible outside of the immediate scope of T, and T is a
private extension.

C-Test. Check at least in out parameters
and return objects. Check cases where
the invariant check fails for an enabled
expression. Try both specific and class-
wide invariants. Don't forget parts.

Check that invariant checks for T are performed for
subprograms when the subprograms are declared within the
immediate scope of T and are visible outside of the immediate
scope of T, and T is a record extension.

C-Test. In this case, the invariant has to
be a class-wide invariant of an ancestor.
Check at least in out parameters and
return objects. Check cases where the
invariant check fails for an enabled
expression. Try cases where the invariant
is on a grandparent.

Check that invariant checks for T are performed for
subprograms when the subprograms are declared within the
immediate scope of T and override inherited operations that
are visible outside of the immediate scope of T, and T is a
record extension.

C-Test. In this case, the invariant has to
be a class-wide invariant of an ancestor.
Check at least in out parameters and
return objects. Check cases where the
invariant check fails for an enabled
expression. Try cases where the invariant
is on a grandparent.

Check that invariant checks for T are not performed for
subprograms when the subprograms are not visible outside of
the immediate scope of T, and T is a private type.

C-Test. Check at least in out parameters
and return objects. Check cases where
the invariant check fails for an enabled
expression. Try both specific and class-
wide invariants. Don't forget parts. Need a
case where the invariant is broken, then
fixed before returning to the client test
program.

Check that invariant checks for T are not performed for
subprograms when the subprograms are not visible outside of
the immediate scope of T, and T is a private extension.

C-Test. Check at least in out parameters
and return objects. Check cases where
the invariant check fails for an enabled
expression. Try both specific and class-
wide invariants. Don't forget parts. Need a
case where the invariant is broken, then
fixed before returning to the client test
program.

Check that invariant checks for T are not performed for
subprograms when the subprograms are not visible outside of
the immediate scope of T, and T is a record type.

C-Test. Check at least in out parameters
and return objects. Check cases where
the invariant check fails for an enabled
expression. Try both specific and class-
wide invariants. Don't forget parts. Need a
case where the invariant is broken, then
fixed before returning to the client test
program.

1

(20/3) Dynamic Portion

(20.1/4) Dynamic Rule added by AI12-0042-1. 7

(21/4) Dynamic 6

6

6

6

6

(22/3) 1 Dynamic Portion

2 C732A01 All

3 “Arbitrary order” is not testable.

4 7

5 “Arbitrary order” is not testable.

Check that invariant checks for T are not performed for
subprograms even when the subprograms are declared within
the immediate scope of T and override inherited operations
that are visible outside of the immediate scope of T, if T is not
a record extension, private extension, or private type.

C-Test, but I think this is untestable as
there isn't any way to inherit from a tagged
type (necessary for a class-wide invariant)
that doesn't involve some sort of
extension. I left this because there might
be some Bairdian way to do this using
generic private types.

Almost goes without saying, but we
said it.

Check that invariant checks for T are performed for view
conversions to class-wide types from a specific descendant of
T when the conversions occur within the immediate scope of
T.

C-Test. Includes T itself. See the example
in Randy Brukardt's mail in the appendix
of AI12-0042-1. Use enabled invariants
and try both specific and class-wide
invariants.

AI12-0080-1 and AI12-0159-1
corrected typos here, no semantic
change.

Check that invariant checks for T are not performed when the
Assertion_Policy is Ignore for Type_Invariant at the point of
the aspect specification for Type_Invariant.

C-Test. Try both global and specific
assertion policies.

Check that invariant checks for T are performed when the
Assertion_Policy is Check for Type_Invariant at the point of
the aspect specification for Type_Invariant, even if the policy if
Ignore at the point of the call.

C-Test. Try both global and specific
assertion policies.

Check that invariant checks for T are not performed when the
Assertion_Policy is Ignore for Type_Invariant'Class at the point
of the aspect specification for Type_Invariant'Class.

C-Test. Try both global and specific
assertion policies.

Check that invariant checks for T are performed when the
Assertion_Policy is Check for Type_Invariant'Class at the point
of the aspect specification for Type_Invariant'Class, even if the
policy if Ignore at the point of the call.

C-Test. Try both global and specific
assertion policies.

Check that invariant checks for T whose parent is P are
performed when the Assertion_Policy is Check for
Type_Invariant'Class at the point of the aspect specification
for Type_Invariant'Class for P, even if the policy if Ignore at
the declaration of T.

C-Test. Try both global and specific
assertion policies.

Can't test this separately because of
the arbitrary order rules.

Almost widely-used (every test for a
failing invariant will depend on this, but
we ought to have at least one test that
has this specifically as one of the
objectives.

Check that Assertion_Error is raised if any enabled invariant
expression yields False when evaluated.

Not
Testable

Check that invariant checks on a call are performed before
any copy-back of parameters.

C-Test. Check that the by-copy
parameters are not modified after an
invariant check fails, either for the
parameters or for the function result.

Not
Testable

(22.1/4) 8

(23/3) 6 C-Test.

5

4

4

(24/3) NonNormative 7 C-Test.

7.4 (1) Redundant

(2) 1 Redundant

2 Definitions Deferred constant

3 Legality Subpart

Negative B740001

(3) 1 Legality Subpart

Negative B740003 All

2 Legality Portion Lead-in for the bullets below.

(4) Legality Subpart

Negative B740003 All

(5/2) Legality Subpart

6 C-Test.

Rule added by AI12-0150-1, reworded
by AI12-0159-1.

Check that a class-wide invariant check always calls the
routines for type T, even when the tag of the object identifies
some other descendant type.

C-Test. Specifically, we're trying to check
that the routines do not dispatch. Be sure
to test cases where the invariant is
defined on an ancestor of T. Important
because it could represent a change.

Check that the specific invariants evaluated for a dispatching
call are those of the subprogram actually invoked.

Check that the specific invariants evaluated for a call through
an access-to-subprogram are those of the actual subprogram.

C-Test. This is probably only interesting in
the case in the AARM note (as the types
have to be the same as subtype
conformance is required), so it mainly is
the presence or absence of the check.

Check that the class-wide invariants evaluated for a
dispatching call are those of the subprogram actually invoked.

C-Test. This is only interesting when the
dispatching call is for a root type, but the
class-wide invariant is added later in the
derivation tree. (If it was on the root, all of
the routines would have the same
invariant.)

Check that the class-wide invariants evaluated for a call
through an access-to-subprogram are those of the actual
subprogram.

C-Test. This isn't likely to be interesting,
other than in the case from the AARM
note.

This is a note. But the case discussed
in the note seems like it should be
tested directly.

Check that for a derived type NT, specific invariants are
checked for both T and NT for an inherited primitive
subprogram, while only the specific invariants of NT are
checked for an overridden primitive subprogram.

Any legal test of deferred constants will
test this.

Modified by Ada 2012, AI05-0229-1 to
talk about aspects rather than
pragmas.

Check that a deferred constant declaration requires a
completion of a full constant declaration unless aspect Import
is true for the deferred constant.

Note: We check the case where aspect
Import is True for 7.4(8/3).

Any legal test of deferred constants will
test this.

Check that a deferred constant declaration completed with a
full constant declaration can only be given in the visible part of
a package specification.

Any legal test of deferred constants will
test this.

Check that the full constant declaration that completes a
deferred constant declaration can only occur in the private part
of the same package.

The same type isn't very interesting,
and other tests will cover that.

Check that a deferred constant declaration can include an
anonymous access type.

Negative B740002 All

4

B740001 This will always be a separate type.

(6/3) 1 Legality Subpart

Negative 4

2 Redundant C74307A 2 C-Test. Try index constraints.

3 Redundant

(7/2) Legality 3 C-Test.

Negative B740001

(7.1/2) Legality 5

B740002 All

(8/3) Legality 4

3

(9/2) Legality 4

Check that the full constant declaration completing a deferred
constant declaration is illegal if it has an anonymous access
type that does not statically match that of the deferred
constant declaration.

Check that the full constant declaration completing a deferred
constant declaration is illegal if it does not have an anonymous
access type and the type is not the same as the one used in
the deferred constant declaration.

B-Test. Try numeric types with the same
range; and structurally similar records. No
tests in ACATS 2.6; the coverage
document claims that B740001 tests this,
but it does not (it only tries complete
omission of the completion).

Check that the full constant declaration that completes a
deferred constant declaration cannot declare an anonymous
array type.

Any legal test of deferred constants will
test this.

Approved AI05-0062-1 changed this
wording.

If the deferred constant declaration includes a constrained
subtype_indication, the full constant declaration is illegal if its
constraint does not statically match that of the deferred
constant.

B-Test. No tests in ACATS 2.6; the
coverage document claims that B740001
tests this, but it does not.

This is really the lack of a rule, but we
test it anyway as implementers are
likely to require exact matching.

Check that if the subtype of a deferred constant declaration is
unconstrained, the full constant declaration can give any
subtype of the type.

Check that a full constant declaration can give aliased even
if the deferred constant does not.

Check that the full constant declaration must include aliased
if the deferred constant declaration includes aliased.

Approved AI05-0062-1 makes this
objective valid.

Check that a full constant declaration can exclude null even if
the deferred constant does not.

C-Test. Tested in B-Test. Note that a
private type completed by an access type
may not allow a null exclusion on the
deferred constant; this should be tested.

Check that the full constant declaration must exclude null if the
deferred constant declaration excludes null.

Modified by Ada 2012, AI05-0229-1 to
talk about aspects rather than
pragmas.

Check that a deferred constant declaration for which aspect
Import is True can appear anywhere.

C-Test. This is marked as untested in the
coverage document for ACATS 2.6. This
will need a test like the ones in Annex B
for C interfacing.

Check that a deferred constant declaration for which aspect
Import is True cannot also be completed with a full constant
declaration.

B-Test. Use “Ada” as the convention
name to avoid having to use something
implementation-defined.

B74304A (initializing
objects), B74304B (generic
in parameter), B74304C
(generic in parameter)

Check that a use of a deferred constant that freezes the
constant before the completion is illegal.

B-Test. Pretty much any use other than in
a default_expression is illegal. Try in a
range constraint, index constraint, and
discriminant constraint. (Ada 83 rules
made these unlikely, so they were not
tested; but they're not as unlikely in Ada
95 or later.) Also try in an object renames.

(10/3) Dynamic 2

C74302A

C74302A

(11) NonNormative A note.

(12) NonNormative Start of an example...

(13) NonNormative

(14) NonNormative ...end of the example.

7.5 (1/2) General

(2/2) 1 Legality Subpart

Negative B391004, B730001

2 Redundant Defined in 3.4(5.1/2) and 3.9.4(12/2).

(2.1/3) Legality Portion

6

6

5

(2.2/2) Legality Subpart

Negative B750A01 All

Added by AI05-0147-1. B750A08 All

B74304B (generic
defaults), C74305A
(parameters, record
components), C74305B
(parameters)

Check that the use of a deferred constant in a
default_expression is not considered freezing.

AI05-0004-1 adds access_definition,
which was missing.

Check that the elaboration of a deferred constant elaborates
the subtype indication, access definition, or array type
declaration.

C-Test. Try an array type declaration
(access definition elaborations have no
effect).

This is caused by 3.3.1(7) and the lack
of a prohibition here; we need to test it
here since it is related to completions.

Check that multiple declarations can be used for deferred
constant declarations, even if the full declarations are given
individually.

Check that multiple declarations can be used for full constant
declarations completing deferred constant declarations, even
if the deferred declarations are given individually.

Any test of limited tagged types with
limited components will check this.

Check that a non-limited tagged record declaration is illegal if
it has any limited components.

This is the lead-in (and meat) of the
following bullets.

Other contexts don't have restrictions;
check that.

Check that in an actual parameter of a subprogram call, an
expression of a limited type is not restricted; specifically,
object names are allowed.

C-Test. Must check that we don't go too
far.

Check that in a default expression for a subprogram
parameter, an expression of a limited type is not restricted;
specifically, object names are allowed.

C-Test. Must check that we don't go too
far.

Check that an object renaming allows renaming limited objects
that are function calls that are dereferenced, indexed, sliced,
and selected.

C-Test. Must check that we don't go too
far.

Conditional_expressions added by
AI05-0147-1, new test cases below.

Tests of legal limited expressions will
cover this.

In the initialization expression of an object declaration, an
expression of a limited type cannot be anything other than an
aggregate, function call, or a qualified or parenthesized
expression whose operand would be allowed.

In the initialization expression of an object declaration, an
expression of a limited type cannot be a conditional
expression which has a dependent expression that is not
allowed by 7.5(2.1).

Added by AI12-0172-1 (not in TC1). 1

(2.3/2) Legality Subpart

Negative B750A02 All

Added by AI05-0147-1. B750A09 All

Added by AI12-0172-1 (not in TC1). 1

(2.4/2) Legality Subpart

Negative B750A03 All

Added by AI05-0147-1. 7

Added by AI12-0172-1 (not in TC1). 1

(2.5/2) Legality Subpart

Negative 7

Added by AI05-0147-1. 6

Added by AI12-0172-1 (not in TC1). 1

(2.6/2) Legality Subpart

In the initialization expression of an object declaration, an
expression of a limited type can be a raise expression.

B-Test is sufficient, no need to try to
execute.

B750A08 contains
these cases,
commented out.

Tests of legal limited expressions will
cover this.

In the default expression of a component declaration, an
expression of a limited type cannot be anything other than an
aggregate, function call, or a qualified or parenthesized
expression whose operand would be allowed.

In the default expression of a component declaration, an
expression of a limited type cannot be a conditional
expression which has a dependent expression that is not
allowed by 7.5(2.1).

In the default expression of a component declaration, an
expression of a limited type can be a raise expression.

B-Test is sufficient, no need to try to
execute.

B750A09 contains
these cases,
commented out.

Tests of legal limited expressions will
cover this.

In the expression of a record component association of an
aggregate, an expression of a limited type cannot be anything
other than an aggregate, function call, or a qualified or
parenthesized expression whose operand would be allowed.

In the expression of a record component association of an
aggregate, an expression of a limited type cannot be a
conditional expression which has a dependent expression that
is not allowed by 7.5(2.1).

B-Test. Try both if and case expressions;
also try nested cases. Also try raise
expressions (see below).

In the expression of a record component association of an
aggregate, an expression of a limited type can be a raise
expression.

B-Test is sufficient, no need to try to
execute. Include in test for previous
objective.

Tests of legal limited expressions will
cover this.

In the expression for the ancestor part of an extension
aggregate, an expression of a limited type cannot be anything
other than an aggregate, function call, or a qualified or
parenthesized expression whose operand would be allowed.

B-Test. Try object names (including those
dereferenced, indexed or selected),
functions that are dereferenced, indexed,
or selected, type conversions, qualified
and parenthesized versions of these. Use
foundation F750A00 and pattern on
B750A02.

In the expression for the ancestor part of an extension
aggregate, an expression of a limited type cannot be a
conditional expression which has a dependent expression that
is not allowed by 7.5(2.1).

B-Test. Try both if and case expressions;
also try nested cases. Also try raise
expressions (see below).

In the expression for the ancestor part of an extension
aggregate, an expression of a limited type can be a raise
expression.

B-Test is sufficient, no need to try to
execute. Include in test for previous
objective.

Tests of legal limited expressions will
cover this.

Negative 8

Added by AI05-0147-1. 7

Added by AI12-0172-1 (not in TC1). 1

(2.7/2) Legality Subpart

Negative B750A04 All

Added by AI05-0147-1. B750A10 All

Added by AI12-0172-1 (not in TC1). 1

(2.8/2) Legality Subpart

Negative B750A05, B750A06 All

Added by AI05-0147-1. B750A11, B750A12 All

Added by AI12-0172-1 (not in TC1). 1

(2.9/3) Legality Subkind

Negative B750A07 All

B750A13 All

In an expression of an array aggregate, an expression of a
limited type cannot be anything other than an aggregate,
function call, or a qualified or parenthesized expression whose
operand would be allowed.

B-Test. Try object names (including those
dereferenced, indexed or selected),
functions that are dereferenced, indexed,
or selected, type conversions, qualified
and parenthesized versions of these.

In the expression of an array aggregate, an expression of a
limited type cannot be a conditional expression which has a
dependent expression that is not allowed by 7.5(2.1).

B-Test. Try both if and case expressions;
also try nested cases. Also try raise
expressions (see below).

In the expression of an array aggregate, an expression of a
limited type can be a raise expression.

B-Test is sufficient, no need to try to
execute. Include in test for previous
objective.

Tests of legal limited expressions will
cover this.

In the qualified expression of an initialized allocator, an
expression of a limited type cannot be anything other than an
aggregate, function call, or a qualified or parenthesized
expression whose operand would be allowed.

In the qualified expression of an initialized allocator, an
expression of a limited type cannot be a conditional
expression which has a dependent expression that is not
allowed by 7.5(2.1).

In the qualified expression of an initialized allocator, an
expression of a limited type can be a raise expression.

B-Test is sufficient, no need to try to
execute.

B750A10 contains
these cases,
commented out.

Tests of legal limited expressions will
cover this.

In the expression of a return statement, an expression of a
limited type cannot be anything other than an aggregate,
function call, or a qualified or parenthesized expression whose
operand would be allowed.

In the expression of a return statement, an expression of a
limited type cannot be a conditional expression which has a
dependent expression that is not allowed by 7.5(2.1).

In the expression of a return statement, an expression of a
limited type can be a raise expression.

B-Test is sufficient, no need to try to
execute.

B750A11 and
B750A12 contains
these cases,
commented out.

Tests of legal limited expressions will
cover this. Rule added by Ada 2012,
AI05-0177-1.

In the expression of an expression function, an expression of
a limited type cannot be anything other than an aggregate,
function call, or a qualified or parenthesized expression whose
operand would be allowed.

In the expression of an expression function, an expression of
a limited type cannot be a conditional expression which has a
dependent expression that is not allowed by 7.5(2.1).

Added by AI12-0172-1 (not in TC1). 1

(2.10/3) Legality Subpart

Negative 7

Added by AI05-0147-1. 6

Added by AI12-0172-1 (not in TC1). 1

(3/3) Definitions Portion

(4/2) Definitions 3 B-Test.

3 B-Test.

3

B92001B B-Test.

3 B-Test.

(5/3) Definitions 3 B-Test.

(6/2) Definitions B74404B

(6.1/3) Definitions 6

(6.2/2) Definitions 4 B-Test.

(7/2) Definitions

6 C-Test.

In the expression of an expression function, an expression of
a limited type can be a raise expression.

B-Test is sufficient, no need to try to
execute.

B750A13 contains
these cases,
commented out.

Tests of legal limited expressions will
cover this.

In the default expression or actual parameter for a generic
formal object of mode in, an expression of a limited type
cannot be anything other than an aggregate, function call, or a
qualified or parenthesized expression whose operand would
be allowed.

B-Test. Try object names (including those
dereferenced, indexed or selected),
functions that are dereferenced, indexed,
or selected, type conversions, qualified
and parenthesized versions of these. Use
foundation F750A00 and pattern on
B750A02.

In the default expression or actual parameter for a generic
formal object of mode in, an expression of a limited type
cannot be a conditional expression which has a dependent
expression that is not allowed by 7.5(2.1).

B-Test. Try both if and case expressions;
also try nested cases. Also try raise
expressions (see below.)

In the default expression or actual parameter for a generic
formal object of mode in, an expression of a limited type can
be a raise expression.

B-Test is sufficient, no need to try to
execute. Include in test for previous
objective.

Lead-in for bullets below; defines
"limited". Changed to include "view of"
by AI-178, no testing difference.

Check that a value of a derived type with the word limited
cannot be assigned or compared for equality.

Check that a value of an interface with the words
synchronized, task, or protected is limited.

Check that a value of a record type with the reserved word
limited cannot be assigned or compared for equality.

B-Test. Marked as untested in ACATS
2.x.

Check that a value of a task type cannot be assigned or
compared for equality.

Check that a value of a protected type cannot be assigned or
compared for equality.

Added rule from approved AI05-0087-
1.

Check that a value of a class-wide type whose specific type is
limited cannot be assigned or compared for equality.

Check that value of a composite type with a limited component
cannot be assigned or compared for equality.

Added by AI05-0178-1, but already was
in 3.10.1(2.1/2).

Check that an object that has an incomplete view cannot be
assigned.

B-Test. One way to do this is to have a
subprogram with two parameters with a
tagged incomplete type from a limited
with. Then A := B is illegal in the body as
the incomplete view is limited, and there is
no other reason for an error. AI05-0178-1
has another way.

Careful: this was renumbered by AI05-
0178-1.

Check that a value of a derived type whose parent type is a
limited non-interface type cannot be assigned or compared for
equality.

Check that a value of a derived type whose parent type is a
limited interface type but that is not otherwise limited can be
assigned and compared for equality.

(8/2) Redundant

(8.1/3) Definitions Lead-in.

(8.2/3) Definitions Check in 3.7(10/2); from AI05-0052-1.

(8.3/3) Definitions

(8.4/3) Definitions Check in 3.7(10/2); from AI05-0052-1.

(8.5/3) Definitions Check in 3.7(10/2); from AI05-0052-1.

(8.6/3) Definitions Check in 3.7(10/2); from AI05-0052-1.

(8.7/3) Definitions Check in 3.7(10/2); from AI05-0052-1.

(8.8/3) Deleted

(9/2) NonNormative A note.

(10/2) Deleted

(11/2) Deleted

(12/2) Deleted

(13/2) Deleted

(14/2) Deleted

(15/2) Deleted

(16) NonNormative A note.

(17) NonNormative Start of an example...

(18) NonNormative

(19) NonNormative

(20) NonNormative

(21) NonNormative

(22) NonNormative

(23/2) NonNormative ...end of example.

7.6 (1) General

(2) General

(3) StaticSem Portion A lead-in for the next part.

(4/3) StaticSem Any use of a controlled type.

C760014 All Check that package Ada.Finalization is pure.

(5/2) StaticSem

Subpart

(6/2) StaticSem 3

Defines "immutably limited"; approved
by AI05-0052-1.

Check in 3.7(10/2); from AI05-0217-1
(a correction to AI05-0052-1).

Careful: this was renumbered by AI05-
0052-1 and AI05-0217-1 and then
deleted by AI05-0067-1.

Widely
used

In Ada 2012, AI05-0212-1 makes this
Pure.

Widely
used

Any use of a non-limited controlled
type.

Preelaborable initialization objectives
are tested in 10.2.1.

Check that Initialize, Adjust, and Finalize are inherited for a
type derived from Controlled and that they can be called but
do nothing.

C-Test. Low priority because doing
nothing is not very interesting, and normal
operation is tested widely.

(7/2) StaticSem Any use of a limited controlled type.

Subpart

(8/2) StaticSem 3

(9/2) 1 Definitions "Controlled type"

6 Check that a controlled type can be declared at any level.

2 Dynamic 5 Check that "=" for type Controlled returns True.

3 General

(9.1/2) Definitions Portion

(9.2/2) Definitions 6 B-Test; depends on AI05-0026.

6 B-Test; depends on AI05-0026.

6 B-Test; depends on AI05-0026.

(9.3/3) Definitions 6

(9.4/3) Definitions 1 Not sure how to test this.

(9.5/3) Definitions New rule from approved AI05-0026. 6

(9.6/2) Definitions 7

(10/2) 1 Dynamic 6

2 Dynamic C760001

Widely
used

Preelaborable initialization objectives
are tested in 10.2.1.

Check that Initialize and Finalize are inherited for a type
derived from Limited_Controlled and that they can be called
but do nothing.

C-Test. Low priority because doing
nothing is not very interesting, and normal
operation is tested widely.

Widely
used

This objective is here as it doesn't fit
anywhere else, and it is new for Ada
2005 (caused by AI95-0344-1 repealing
the 3rd sentence of 3.9.1(3)). C760015 (subprograms)

C-Test. Try in tasks, and in generic units
instantiated in tasks and subprograms.
Also might try in a block in one of the
above.

C-Test. Check when it is incorporated into
an extension.

"Needs finalization"; this is the lead-in
for the definition.

The easiest way to check proper definition
of "needs finalization" is to use the
Unchecked_Union rule added by AI05-
0026. We do that here.

Check that a component declared in a variant_part of an
Unchecked_Union type cannot need finalization by being a
controlled type.

Check that a component declared in a variant_part of an
Unchecked_Union type cannot need finalization by being a
protected type.

Check that a component declared in a variant_part of an
Unchecked_Union type cannot need finalization by being a
task type.

AI05-0092-1 rewords this slightly, but
the testing remains unchanged.

Check that a component declared in a variant_part of an
Unchecked_Union type cannot need finalization by having a
component that needs finalization.

B-Test; depends on AI05-0026. Check
components of controlled types, protected
types, task types, and types with
components of these.

Original rule replaced by approved
AI05-0013. Can't test this with a
component (as we do with the others)
as class-wide components are illegal.

Check that <something> cannot need finalization by having a
class-wide type.

Check that a component declared in a variant_part of an
Unchecked_Union type cannot need finalization by being a
private type whose full type needs finalization.

B-Test; depends on AI05-0026. Check full
types of controlled types, protected types,
task types, and types with components of
these.

Careful: Paragraph number changed by
AI05-0026.

Check that a component declared in a variant_part of an
Unchecked_Union type cannot need finalization by being a
language-defined type that needs finalization.

B-Test. Try various file I/O types, and
containers types, and others. Higher
priority because it is more likely to be
wrong.

C760001 (object decls),
C760009 (extension aggs
ancestor parts)

Check that Initialize is called on controlled components that do
not have an initialization expression that occur in an top-level
object that is initialized by default.

C-Test(s). Need to test <> in aggregates,
and the return object in extended return
statements.

Check that Initialize is called on top-level controlled objects
that are initialized by default.

Negative C760001, C760013

(11/2) Dynamic C760009

5

(12/2) 1 Dynamic

2 Dynamic 5

3 Dynamic C760012

4 C-Test.

4 Dynamic C760012

4 C-Test.

5 Dynamic 5 C-Test.

(13) Dynamic Portion This is just a lead-in.

(14) Dynamic Any assignment will test this.

(15) Dynamic Subpart

(16/3) 1 Dynamic Slightly modified by AI05-0067-1 6

3

2 Dynamic

(17) Dynamic 7

Subpart Adjust is tested as part of 7.6(16).

Check that Initialize is not called for an object or component
whose value is assigned (including by default initial
expressions).

Check that Initialize is called for a extension aggregate whose
ancestor_part is a subtype_mark denoting a controlled
subtype, unless than Initialize routine is abstract.

Check that an extension aggregate can have a subtype_mark
denoting a controlled subtype with an abstract Initialize
routine.

C-Test. The subtype will necessarily be
abstract.

Not
Testable

An arbitrary order can be anything, so
there is nothing to test.

Check that Initialize for an entire object is applied after the
initialization of its components.

C-Test. (This may be a side-effect of
some other test, but not one of those for
7.6.)

Check that record components that have per-object access
discriminant constraints are initialized after any components
that are not so constrained.

Check that protected type components that have per-object
access discriminant constraints are initialized after any
components that are not so constrained.

Check that record components that have per-object access
discriminant constraints are initialized in the order of their
component declarations.

Check that protected type components that have per-object
access discriminant constraints are initialized in the order of
their component declarations.

Check that any task activations required for an allocator occur
after any needed calls to Initialize.

Widely-
used

This just says that adjustment happens;
what that means is given in the
following paragraphs.

C760002 (object decls,
assignment), C760007
(simple return statement,
aggregates)

Check that on any assignment operation, Adjust is called on
any controlled parts of the operation.

C-Test: Check for extended return
statements. Careful: There are
permissions to eliminate these operations.

C760002 (object decls,
assignment)

Check that Adjust is called on the assignment to an object
after the adjustment of all of its components.

C-Test: Check for aggregates, ancestor
parts of extension aggregates, and
extended return statements. Careful:
There are permissions to eliminate these
operations.

Not
Testable

No effect is not testable, since we
aren't going to try to guess possible
incorrect effects.

Check that any controlled part in the target of an
assignment_statement is finalized before the value is
assigned to it.

C-Test. This does not appear to be tested
in ACATS 2.6.

5

(17.1/3) Definitions Subpart "built in place"

(17.2/3) Dynamic 8

7

C760A01 All

(17.3/3) Dynamic C761010 6

(17.4/3) Dynamic This is unspecified.

(17.5/3) Dynamic Subpart Lead-in

(17.6/3) Dynamic Subpart

(17.7/3) Dynamic Subpart Tested as part of 7.6(17.2-3).

(17.8/3) Dynamic Subpart Tested as part of 7.6(17.2-3).

(17.9/3) Dynamic Subpart

(17.10/3) Dynamic Subpart

(17.11/3) Dynamic Subpart

(17.12/3) Deleted Deleted by AI05-0067-1.

(18/3) Impl-Perm Portion This is just a lead-in.

(19/3) Impl-Perm

(20/3) Impl-Perm

(21/3) Impl-Perm

(22/2) Impl-Perm

(23/2) Impl-Perm Portion Part of the previous rule.

(24/2) Impl-Perm Portion Part of the previous rule.

(25/2) Impl-Perm Portion Part of the previous rule.

(26/2) Impl-Perm Portion Part of the previous rule.

(27/2) Impl-Perm Portion Part of the previous rule.

7.6.1 (1) General

Check that if an assignment_statement uses an anonymous
object, it is finalized at the end of the statement.

C-Test. This test requires care to avoid
tripping over the permissions of 7.6(18-
21).

Check that no separate anonymous object is used for an
immutably limited function call initializing an object.

C-Test; use foundation F760A00, try
cases like those in C760A01. Make sure
to test aggregates in return statements
(didn't do that in C760A01).

Check that no separate anonymous object is used for an
immutably limited expression function call initializing an object.

C-Test; use foundation F760A00, try
cases like those in C760A01. Make sure
to test aggregates as the return
expression (didn't do that in C760A01).

Check that no separate anonymous object is used for a limited
aggregate initializing an object.

Test originally was in section 7.5 in
ACATS 3.0.

Check that the assignment (other than in an
assignment_statement) of an aggregate with a controlled part
does not use an anonymous object.

C-Test: Add subtests for controlled
subcomponents.

Not
Testable

Tested as part of 7.6(17.2-3), if testable
at all.

Tested as part of 7.6(17.2-3), if testable
at all.

Tested as part of 7.6(17.2-3), if testable
at all.

Tested as part of 7.6(17.2-3), if testable
at all.

Not
Testable

But take care that other tests take this
permission into account. Modified by
AI05-0067-1.

Not
Testable

But take care that other tests take this
permission into account. Modified by
AI05-0067-1.

Not
Testable

But take care that other tests take this
permission into account. Modified by
AI05-0067-1.

Not
Testable

But take care that other tests take this
permission into account.

(2/2) 1 Definitions Subpart

2 Definitions Subpart

3 Definitions Subpart

(3/2) 1 Definitions

2 Definitions C760011, C761003 3 C-Test. Try function bodies.

7 C-Test.

4

6

C761002

4

7

7

8

8

7

7

7

Completion. Other rules (like
finalization) tests this.

Normal completion. Other rules (like
finalization) tests this.

Abnormal completion. Other rules (like
finalization) tests this.

Not
testable

Left (a construct). This has no effect of
its own.

Master. We test this here because it is
too complex to get right otherwise.

Check that a subprogram body is a master: leaving the body
causes objects declared in that body to be finalized.

Note: Protected bodies can't have
objects.

Check that a task body is a master: leaving the body causes
objects declared in that body to be finalized.

C760011 (function calls,
aggregates).

Check that a procedure call is a master: leaving the call
causes objects created by that call to be finalized.

C-Test; check anonymous access
allocators and possibly task awaiting.

Check that an entry call is a master: leaving the call causes
objects created by that call to be finalized.

C-Test, check aggregates, function calls,
anonymous access allocators, and
possibly task awaiting.

Check that a block statement is a master: leaving the block
causes objects declared in the block to be finalized.

C760011 (function calls,
aggregates).

Check that the expression of an if statement is a master:
leaving the expression causes objects created by that
expression to be finalized.

C-Test; check anonymous access
allocators and possibly task awaiting. Also
try "elsif".

Check that the expression of an case statement is a master:
leaving the expression causes objects created by that
expression to be finalized.

C-Test, check aggregates, function calls,
anonymous access allocators, and
possibly task awaiting. Note: The choices
of a case statement need to be static and
elementary, thus they aren't interesting.

Check that the expression of an while loop and the range of a
for loop are masters: leaving the loop header causes objects
created by the header to be finalized.

C-Test, check aggregates, function calls,
anonymous access allocators, and
possibly task awaiting.

Check that an assignment_statement is a master: leaving the
statement causes objects created by the expressions to be
finalized.

C-Test, check aggregates, function calls,
anonymous access allocators, and
possibly task awaiting. Be sure to test
both the source expression and the target
name.

Check that a return_statement is a master: leaving the
statement causes objects created by the expression (other
than the return object) to be finalized.

C-Test, check aggregates, function calls,
anonymous access allocators, and
possibly task awaiting. Be sure to exclude
the return object, and to try both simple
and extended returns.

Check that an exit statement is a master: leaving the
statement causes objects created by the when expression to
be finalized.

C-Test, check aggregates, function calls,
anonymous access allocators, and
possibly task awaiting.

Check that a raise_statement is a master: leaving the
statement causes objects created by the message expression
to be finalized.

C-Test, check aggregates, function calls,
anonymous access allocators, and
possibly task awaiting.

Check that a delay_statement is a master: leaving the
statement causes objects created by the expression to be
finalized.

C-Test, check aggregates, function calls,
anonymous access allocators, and
possibly task awaiting.

6

8

8

7

7

6

C761001

3 Definitions Subpart

(4) 1 Dynamic Subpart Tested as part of 9.3.

2 Dynamic Subpart Tested as part of 7.6.1(3/2).

3 Redundant

4 Dynamic 9 C-Test.

C761002 9

C761002 9

7 C-Test

7 C-Test.

C761004 5

(5) Dynamic Portion Just a lead-in for the below.

(6/3) Dynamic

Check that an abort_statement is a master: leaving the
statement causes objects created by the name to be finalized.

C-Test, check aggregates, function calls,
anonymous access allocators, and
possibly task awaiting. Mst of these cases
only can occur in the expression of an
array index or in a function call.

Check that the expression of an object declaration is a master:
leaving the declaration causes objects created by that
expression to be finalized.

C-Test, check aggregates, function calls,
anonymous access allocators, and
possibly task awaiting. C760011 appears
to cover this but does not require
finalization soon enough.

Check that the actual parameter expressions given in an
generic instantiation are masters: leaving the instance causes
objects created by that expressions (but not the values of the
expressions) to be finalized.

C-Test, check aggregates, function calls,
anonymous access allocators, and
possibly task awaiting for parameters of
function calls.

Check that the expressions and ranges in constraints of a type
or subtype declaration are masters: leaving the declaration
causes objects by those expressions and ranges to be
finalized.

C-Test, check aggregates, function calls,
anonymous access allocators, and
possibly task awaiting. Don't forget in
constraints in components and
discriminants.

Check that an expression or function_call renamed as an
object is a master: leaving the renames causes objects
created by that expression to be finalized.

C-Test, check aggregates, function calls,
anonymous access allocators, and
possibly task awaiting.

Check that an expression renamed as a a subprogram is a
master: leaving the renames causes objects created by that
expression to be finalized.

C-Test, check aggregates, function calls,
anonymous access allocators, and
possibly task awaiting. The expression
must have an access-to-subprogram type.

Check that objects declared in library-level packages are
finalized when the environment task is completed.

Tested as part of the previous
sentence.

Check that all masters are finalized innermost-out when an
exit statement causes several masters to be left.

Check that all masters are finalized innermost-out when a goto
statement causes several masters to be left.

C-Test. The existing test only gotos out of
one master.

Check that all masters are finalized innermost-out when a
return statement causes several masters to be left.

C-Test. The existing test doesn't check
the order of finalization.

Check that all masters are finalized innermost-out when a
requeue statement causes several masters to be left.

Check that all masters are finalized innermost-out when the
selection of a terminate alternative causes several masters to
be left.

Check that all masters are finalized innermost-out when
exception propagation causes several masters to be left.

C-Test. The existing test is simple: a
single recursive function.

Not
Testable

No effect is not testable; we aren't
going to guess what implementers
might do wrong. Wording clarified by
AI05-0099-1, no semantic change.

(7/3) Dynamic

(8/3) Dynamic Subpart

(9/3) Dynamic C760012

(9.1/2) Dynamic 6 C-Test.

(10) Dynamic C761002

(11/3) 1 Dynamic

2 Definitions

(11.1/3) 1 Definitions

2 Dynamic Subpart

3 Dynamic Subpart

4 Dynamic Lead-in

(11.2/3) Dynamic C761002 3

(11.3/3) Dynamic 6

(11.4/3) Dynamic 6 C-Test.

(11.5/3) Dynamic 7

(12/2) Dynamic Subpart Tested in 7.6(17).

(13/3) 1 Dynamic C761013 All

C761013 All

6 C-Test.

Widely
Used

Any controlled type C-Test will check
this. Wording clarified by AI05-0099-1,
no semantic change.

Tested in 9.4(20). Wording clarified by
AI05-0099-1, no semantic change.

Wording clarified by AI05-0099-1, no
semantic change.

Check that record components that have per-object access
discriminant constraints are finalized in the reverse order of
their component declarations, and before any components that
are not so constrained.

Check that each coextension of an object is finalized after the
object that designates it.

Check that Unchecked_Deallocation of a controlled object
causes finalization of that object.

Wording revised by AI05-0190-1, no
semantic change here.

C761003, C761004,
C761005

Check that objects created by declarations are finalized in
reverse order of their creation.

This is also covered indirectly by many
other tests.

Defines "existence". Testing that would
be rather meta-physical. :-)

Defines “collection”. Rules split out and
changed by AI05-0190-1.

Tested as part of testing finalization of
a collection.

Tested as part of testing finalization of
a collection.

Check that objects created by an allocator are finalized at the
appropriate point for named access types.

C-Test: Try cases where it's possible to
tell that the finalization happens at the first
freezing point of the access type.

Check that objects created by an allocator for an anonymous
access parameter are finalized immediately after the
associated call returns.

C-Test. Careful: No order is required if
there are more than one in a single call.

Check that objects created by an allocator for an anonymous
access return type are finalized with the master of the call.

Check that objects created by an allocator for an anonymous
access type other than an access parameter or return type are
finalized when the innermost enclosing declaration is finalized.

C-Test. Careful: No order is required if
there are more than one in a declaration.

Much of this is tested by the tests for
7.6(3/2). We try some unusual cases
here.

Check that a function call renamed as an object is not finalized
until the unit or block that directly contains the renaming is left.

Check that a renaming of a controlled object is not finalized
too soon (which an object declared at the place of a renaming
would be).

Check that a object allocated for a derived access type is not
finalized until the finalization of the collection for the (ultimate)
parent access begins.

2 8 C-Test.

3 Added by AI05-0066-1. 8

(13.1/3) Dynamic Subpart C761012 3

(14/1) BoundedErr Negative C760010

C760010

(15) BoundedErr C761006

(16/2) BoundedErr C761006

C761006

(17) BoundedErr C761006

(17.1/3) Deleted C761011

(17.2/1) BoundedErr C761011

(18/2) BoundedErr C761011

C761011

Added by AI05-0142-4, modified by
AI05-0269-1.

Check that the anonymous object associated with the actual
object of an explicitly aliased parameter is not finalized until
the innermost master enclosing the function call is finalized.

Check that the anonymous object associated with a
function_call or aggregate is finalized as soon as the master of
the call or aggregate is.

C-Test. This may be hard to test, as there
is no requirement for such an object to be
created. Perhaps it can be forced by using
it as a non-aliased parameter.

Most normal cases are tested in the
objectives for 7.6.1(3/2). Wording
changed by AI05-0066-1 and AI05-
0262-1, but no testing impact.

Check that anonymous objects associated with an expression
are finalized if a transfer of control or exception occurs before
the expression is left.

C-Test, check aggregates (if possible),
anonymous access allocators, and
possibly task awaiting.

These are cases that are not a
bounded error.

Check that explicit calls to Adjust and Finalize raise the
exception propagated, not Program_Error.

Check that all calls to Initialize raise the exception propagated,
not Program_Error

For a Finalize that propagates an exception and that was
called as part of an assignment statement, check that
Program_Error is raised at the point of the assignment.

For an Adjust that propagates an exception and that was
called as part of an assignment statement, check that
Program_Error is raised at the point of the assignment after
any other Adjusts due to be performed are called.

For an Adjust that propagates an exception that was called as
part of an assignment other than an assignment statement,
check that Program_Error is raised at the point of the
assignment (other Adjusts may or may not be called).

For a Finalize that propagates an exception and that was
called as part of an Unchecked_Deallocation, check that
Program_Error is raised after any other Finalizes due to be
performed are called.

This paragraph was deleted by AI05-
0064; the following rule and objective
are sufficient to cover this case. (But
having the extra test cases is still
worthwhile.)

For a Finalize that propagates an exception and that was
called as part of finalizing an anonymous object, check that
Program_Error is raised after any other Finalizes due to be
performed are called.

For a Finalize that propagates an exception and that was
called as part of the finalizations caused by the end of
execution of a master, check that Program_Error is raised
after any other Finalizes due to be performed are called.

For a Finalize that propagates an exception and that was
invoked by the transfer of control of an exit statement, check
that Program_Error is raised no later than the point where
normal execution would have resumed after any other
Finalizes due to be performed are called.

For a Finalize that propagates an exception and that was
invoked by the transfer of control of a goto statement, check
that Program_Error is raised no later than the point where
normal execution would have resumed after any other
Finalizes due to be performed are called.

C761011

5 C-Test.

(19) BoundedErr C761011

(20) BoundedErr 5 C-Test.

C761007

(20.1/3) Impl-Perm

(20.2/3) Impl-Perm 6 C-Test.

(21/3) NonNormative A Note, editorially changed only.

(22) NonNormative A Note

(23) NonNormative A Note

(24) NonNormative A Note

For a Finalize that propagates an exception and that was
called invoked by the transfer of control of a return statement,
check that Program_Error is raised no later than the point
where normal execution would have resumed after any other
Finalizes due to be performed are called.

For a Finalize that propagates an exception and that was
invoked by the transfer of control of a requeue statement,
check that Program_Error is raised no later than the point
where normal execution would have resumed after any other
Finalizes due to be performed are called.

For a Finalize that propagates an exception and that was
invoked by the transfer of control caused by exception
propagation, check that Program_Error is raised after any
other Finalizes due to be performed for the master are called.

For a Finalize that propagates an exception and that was
invoked by an abort, check that any other Finalizes due to be
performed are called and the exception ignored.

For a Finalize that propagates an exception and that was
invoked by the selection of a terminate alternative, check that
any other Finalizes due to be performed are called and the
exception ignored.

Not
Testable

A permission. Must take care that other
tests don't violate this. Added by AI05-
0107-1.

This permission is binary; it allows
finalization at exactly one of two places,
which we can test. Added by AI05-
0111-3.

Check that objects created by an allocator from a storage pool
that supports subpools are finalized either when their
associated named access type is finalized or when the storage
pool object is finalized.

Not
Testable

Not
Testable

Not
Testable

Not
Testable

Paragraphs: Objectives with tests: Total objectives:

5 173 99 153 222 5

Must be tested Objectives with Priority 10 0

Objectives with Priority 9 3

Important to test Objectives with Priority 8 14

Objectives with Priority 7 38

Valuable to test Objectives with Priority 6 36

Objectives with Priority 5 17

Ought to be tested Objectives with Priority 4 18

Objectives with Priority 3 13

Worth testing Objectives with Priority 2 2

Not worth testing Objectives with Priority 1 12

Total: 153

52

 Completely: 37

Objectives
to test:

Objectives with
submitted tests:

Objectives covered by new
tests since ACATS 2.6

	Objectives

