
Coverage for ISO/IEC 8652:2012 in ACATS 3.x and 4.x
Clauses 4.5.7 – 4.5.8

Objective's Submitted tests

Clause Para. Lines Kind Subkind Notes Tests New Priority Objective Text Objective notes (will need work).

4.5.7 1/3 General

2/3 Syntax

3/3 Syntax

4/3 Syntax

5/3 Syntax

6/3 Syntax

7/3 Syntax B457006 Part 5

4

Negative B457006 All

Negative 6

8/3 NameRes Part 7

Part 7

C457007 All

C457007 All

9/3 NameRes Portion Lead-in for following rules

10/3 NameRes 8

7

A Key to Kinds and subkinds is found on the sheet named Key. Tests new to ACATS 3.0 are shown in bold; ACATS 3.1 in bold italic; ACATS 4.0 in blue bold; ACATS 4.1 in blue bold italic. ACATS 4.2 in green bold italic.

This is a syntax rule, but we test it
because it's in English and it is so
weird.

Check that parentheses can be omitted around an if
expression if it is in a context in which it is already surrounded
by parentheses.

C-Test. Test singleton parameters,
qualified expressions, type conversions,
singleton indexing, pragma Assert,
expression functions, and a singleton
generic instance. Also possible for
attribute parameters, which is too weird
and the wrong type.

Check that parentheses can be omitted around a case
expression if it is in a context in which it is already surrounded
by parentheses.

C-Test. Test singleton parameters,
qualified expressions, type conversions,
singleton indexing, pragma Assert,
expression functions, and a singleton
generic instance. Also possible for
attribute parameters, which is too weird
and the wrong type.

Check that an if expression has to be surrounded in
parentheses if it is not already surrounded by them.

Check that a case expression has to be surrounded in
parentheses if it is not already surrounded by them.

B-Test. Try in parameter lists with
multiple parameters, indexing with
multiple indexes, and in generic
instances with multiple parameters.

Base on
B457006?? Not
very likely to be
different.

C457006 (enum literals)
Check that overloaded functions can be resolved when they
appear as dependent expressions in an if expression.

C-Tests. Still need to try functions and
operators, see C457006 for the pattern.

C457006 (enum literals)
Check that overloaded functions can be resolved when they
appear as dependent expressions in a case expression.

C-Tests. Still need to try functions and
operators, see C457006 for the pattern.

Check that literals can be resolved when they appear as
dependent expressions in an if expression.

Check that literals can be resolved when they appear as
dependent expressions in a case expression.

Check that an if expression used as the operand of a type
conversion effectively distributes the conversion to each
dependent expression.

C-Test. Try cases where the dependent
expressions have different but
convertible types.

Check that a case expression used as the operand of a type
conversion effectively distributes the conversion to each
dependent expression.

C-Test. Try cases where the dependent
expressions have different but
convertible types.

11/3 NameRes

12/3 NameRes

13/3 NameRes

Negative B457007 All

Negative B457007 All

14/3 NameRes C87B42A 2

Negative 3

15/3 NameRes C457004 All

4

Negative B860001 All

16/3 Legality

Negative 7

Negative 6

17/3 1 Legality Subpart Positive cases are listed under line 2.

This does not appear testable
separately; the paragraph 8/3 tests
check the interesting cases.

This does not appear testable
separately; the paragraph 8/3 tests
check the interesting cases.

This does not appear testable
separately; the paragraph 8/3 tests
check the interesting cases.

If none of the above cases apply, the
conditional expression does not
resolve.

Check that if the type of an if expression is not determined by
the resolution rules, it is illegal.

Check that if the type of a case expression is not determined
by the resolution rules, it is illegal.

This rule was moved from 5.3, it is an
Ada 83 rule.

Check that a condition resolves if the overloading includes
only one solution involving boolean types.

C-Test. The existing test only tries
while, if, and exit. Try other cases: entry
barrier, guard, if expression (both if and
elsif), elsif in an if statement. Low
priority: unlikely to find a problem here.

Check that a condition does not resolve if there is not exactly
one solution involving boolean types.

B-Test. Try cases where there are no
solutions, and cases where there are
multiple solutions. Try in all condition
contexts (if statement, if expression,
exit statement, while loop, guard, entry
barrier).

Check that the selecting_expression of a case statement can
be resolved if it is an overloaded function call, of which exactly
one has a discrete type.

Check that the choices of a case expression have the type of
the selecting_expression.

C-Test. Borrow from the case
statement tests for this objective?

Based on the decision of AI12-0040-1;
could check in 8.6, but it really relates
here.

Check that the selecting_expression of a case expression
cannot be resolved if information from the choices is required
to resolve it.

Widely-
used

Any C-Test of a conditional expression
will test.

Check that an if expression is illegal if any of the dependent
expressions cannot be converted to the type of the
expression.

B-Test. Try various legality rules related
to conversion, like access-to-constant
vs. access-to-variable, and
accessibility. All 4.6 rules are available
when the conditional expression is
nested in a type conversion.

Check that a case expression is illegal if any of the dependent
expressions cannot be converted to the type of the
expression.

B-Test. Try various legality rules related
to conversion, like access-to-constant
vs. access-to-variable, and
accessibility. All 4.6 rules are available
when the conditional expression is
nested in a type conversion.

Negative B457005 All

Negative B457005 All

2 4 C-Test.

4 C-Test.

4 C-Test.

4 C-Test.

3 C-Test.

3 C-Test.

18/3 Legality All

Negative B457003 All

19/3 Legality

Negative 5.4(5/3), sentence 1. All

Negative 5.4(5/3), sentence 2. B457002 All

Negative 5.4(6-9/3). All

Negative 5.4(10). All

Check that if the expected type of a if expression is a specific
tagged type, then if some (but not all) of the dependent
expressions are dynamically tagged, the expression is illegal.

Check that if the expected type of a case expression is a
specific tagged type, then if some (but not all) of the
dependent expressions are dynamically tagged, the
expression is illegal.

Check that the dependent expressions of an if expression can
be dynamically tagged, and that the expression can be used in
a context that requires a dynamically tagged expression.

Check that the dependent expressions of a case expression
can be dynamically tagged, and that the expression can be
used in a context that requires a dynamically tagged
expression.

Check that the dependent expressions of an if expression can
be tag-indeterminate, and that the expression can be used in a
context that requires a tag-indeterminate expression.

Check that the dependent expressions of a case expression
can be tag-indeterminate, and that the expression can be used
in a context that requires a tag-indeterminate expression.

Check that the dependent expressions of an if expression can
be statically tagged, and that the expression can be used in a
context that requires a statically tagged expression.

Check that the dependent expressions of a case expression
can be statically tagged, and that the expression can be used
in a context that requires a statically tagged expression.

C457002 (one case),
B457003

Check that the else part can be omitted from a boolean if
expression, and it has the value True.

Don't have a C-Test for a non-Boolean
boolean type, but that seems hardly
usage-oriented.

Check that if the type of an if expression is not a boolean type,
the else part cannot be omitted.

Widely-
used

Legal case expressions will of course
meet these rules. We note the
particular rules below.

B457001 (dynamic
predicates), B457004
(variables, subtypes)

Check that a case expression is illegal if any of the choices is
non-static.

Check that a case expression is illegal if others is not the last
choice or does not stand alone.

B457001 (static
predicates), B457004 (non-
predicate cases)

Check that a case expression is illegal if any of the possible
values of the selecting expression are not covered by a
choice.

B457001 (static
predicates), B457004 (non-
predicate cases)

Check that a case expression is illegal if more than one choice
covers the same value.

20/3 Dynamic C457001, C457002 All

C457001, C457002 All

21/3 1 Dynamic 5 C-Test. Pretty basic stuff.

2 All

C457003 All

3 C457003 All

C457005 All

4.5.8 0.1/4 General Added by AI12-0158-1.

1/3 Syntax

2/3 Syntax

3/3 Syntax

4/3 Syntax 5

Negative 5

5/3 NameRes 7

Negative 7 B-Test.

6/4 Dynamic C458001 All

Check that for the evaluation of an if expression, the condition
specified after if, and any conditions specified after elsif, are
evaluated in succession, until one evaluates to true.

Check that result of an if expression is the result of evaluating
the dependent expression corresponding to the condition that
evaluates to True.

Check that the evaluation of a case expression starts by
evaluated the selecting expression.

C457003, C457005 (others,
ignored predicates)

Check that result of an case expression is the result of
evaluating the dependent expression corresponding to the
choice selected by the selecting expression.

Check that only the selected dependent expression is
evaluated in a case expression, along with the selecting
expression.

Check that if the value of the selecting expression is not
covered by any case alternative, Constraint_Error is raised.

This is almost untestable, since it is
impossible to create an invalid value
without making the program erroneous.
But we can play tricks with uninitialized
objects, as in this test. A better, but
limited, way is in the next objective.

If the selecting expression of a case expression is a name with
a static nominal subtype and has a static predicate, the case
statement does not have an others clause, and the static
predicate is disabled, then Constraint_Error is raised if the
value of the selecting expression does not satisfy the
predicate.

This is a syntax rule, but we test it
because it's in English and it is so
weird.

Check that parentheses can be omitted around a quantified
expression if it is in a context in which it is already surrounded
by parentheses.

C-Test. Test singleton parameters,
qualified expressions, type conversions,
singleton indexing, pragma Assert, and
a singleton generic instance. Also
possible for attribute parameters, which
is too weird and the wrong type.

Check that a quantified expression has to be surrounded in
parentheses if it is not already surrounded by them.

B-Test. Try in parameter lists with
multiple parameters, indexing with
multiple indexes, and in generic
instances with multiple parameters.

Base on
B457006?? Not
very likely to be
different.

Check that the predicate of a quantified expression can be
resolved if it is an overloaded function call.

C-Test. Try overloaded functions that
return a boolean and non-boolean type.

Check that the predicate of a quantified expression cannot
have a different type than the entire quantified expression.

Modified by AI12-0158-1, objectives
unchanged.

Check that the predicate of a quantified expression is
evaluated in the order specified by the
loop_parameter_specification.

8 C-Test.

8

8

7/3 Dynamic Portion This is lead-in text.

8/4 1,2 Dynamic Part 9 C-Test. Try for each kind of iterator.

8 C-Test. Try for each kind of iterator.

3 Part 9

4 5 C-Test. Try for each kind of iterator.

9/4 1, 2 Dynamic Part 9 C-Test. Try for each kind of iterator.

8 C-Test. Try for each kind of iterator.

3 Part 9

4 5 C-Test. Try for each kind of iterator.

Check that the predicate of a quantified expression is
evaluated in the order specified by an array component
iterator specification.

Check that the predicate of a quantified expression is
evaluated in the order specified by a generalized iterator
specification.

C-Test. Use a foundation to define the
iterator here, so it can be shared
amongst a bunch of tests for this
subclause. (Either that or make one
giant test.)

Check that the predicate of a quantified expression is
evaluated in the order specified by a container element iterator
specification.

C-Test. Use the foundation defined
above.

Modified by AI12-0158-1, objectives
unchanged. C458001 (normal for loop)

Check that if the quantifier is all, the result of a quantified
expression is True if the predicate is True for all values and
False otherwise.

Check that if the quantifier is all, the result of a quantified
expression is True if there are no values in the domain.

C458001 (normal for loop)

Check that evaluation of predicates stops for a quantified
expression with a quantifier of all when a predicate evaluates
to False.

C-Test. Try for each kind of iterator.
Make sure no extra evaluations are
made.

Check that any exceptions propagated by the predicate of a
quantified expression with a quantifier of all is propagated by
the quantified expression.

Modified by AI12-0158-1, objectives
unchanged. C458001 (normal for loop)

Check that if the quantifier is some, the result of a quantified
expression is True if the predicate is True for some value and
False otherwise.

Check that if the quantifier is some, the result of a quantified
expression is False if there are no values in the domain.

C458001 (normal for loop)

Check that evaluation of predicates stops for a quantified
expression with a quantifier of some when a predicate
evaluates to True.

C-Test. Try for each kind of iterator.
Make sure no extra evaluations are
made.

Check that any exceptions propagated by the predicate of a
quantified expression with a quantifier of some is propagated
by the quantified expression.

Paragraphs: Objectives with tests: Total objectives:

2 31 30 34 56 2

Must be tested Objectives with Priority 10 0

Objectives with Priority 9 4

Important to test Objectives with Priority 8 6

Objectives with Priority 7 6

Valuable to test Objectives with Priority 6 2

Objectives with Priority 5 6

Ought to be tested Objectives with Priority 4 6

Objectives with Priority 3 3

Worth testing Objectives with Priority 2 1

Not worth testing Objectives with Priority 1 0

Total: 34

29

 Completely: 22

Objectives
to test:

Objectives with
submitted tests:

Objectives covered by new
tests since ACATS 2.6

	Objectives

