
Coverage for ISO/IEC 8652:2012 and subsequent corrections in ACATS 3.x and 4.x
Subclause 6.1.1

Objective's Submitted tests

Clause Para. Lines Kind Subkind Notes Tests New Priority Objective Text Objective notes (will need work).

6.1.1 (1/4) StaticSem Portion

(2/3) 1 StaticSem All

Added by AI12-0045-1 (in TC1) B611001 Part 7 Check that Pre can be specified for a generic subprogram.

B611001, B611007 Part 7 Check that Pre can be specified for an entry.

Negative Added by AI12-0045-1 (in TC1) B611001 All

Negative B611001 All

Negative All

Negative 1 Check that Pre cannot be specified on an entry body.

2

(3/3) 1 StaticSem “Primitive” is required by 13.1.1(16/3). All

Negative B611003 All

Negative Confirmed by pending AI12-0182-1 7 B-Test.

Negative B611007 All

Negative Confirmed by pending AI12-0182-1 7 B-Test.

Negative B611007 All

Negative Part 7

A Key to Kinds and subkinds is found on the sheet named Key. Tests new to ACATS 3.0 are shown in bold; ACATS 3.1 in bold italic; ACATS 4.0 in blue bold; ACATS 4.1 in blue bold italic. ACATS 4.2 in green bold italic.

Lead-in for the following paragraphs.
Changed by AI12-0045-1.

C611001, C611B01
Check that Pre can be specified for a non-instance
subprogram.

Still need a C-Test, can be included in
some other tests.

Still need a C-Test, can be included in
some other tests.

Check that Pre cannot be specified for an instance that is a
subprogram.

Was a change from the original Ada
2012 text.

Check that Pre cannot be specified for packages, objects,
types, single tasks, or single protected objects.

From 13.1.1(18/4), here to ensure it is
tested throughly.

BD11001 (one example),
B611002

Check that Pre cannot be specified on a subprogram body that
is acting as a completion.

From AI12-0169-1 and another AI not
yet written; needs to be tested here, but
only part of next standard.

B-Test. For next standard (whatever it is:
Amendment or Revision)

Widely
Used

This is the Ada 95; any Ada 95
subprogram call implicitly tests it.

C611001, C611B02
Check that Pre'Class can be specified for a non-instance
primitive subprogram of a tagged type.

A generic subprogram can never be
primitive. Nor can an instance of a
generic subprogram ever be a primitive
operation of a tagged type (the
occurrence of the instance freezes the
tagged type, making instance be too
late for freezing). Thus we don't need a
separate instance test here.

Check that Pre'Class cannot be specified for a generic
subprogram.

Check that Pre'Class cannot be specified for an entry of a
tagged task or protected type.

Check that Pre'Class cannot be specified for an entry of an
untagged task or protected type.

Check that Pre'Class cannot be specified for a protected
subprogram of a tagged protected type.

Check that Pre'Class cannot be specified for a protected
subprogram of an untagged protected type.

“Primitive” is required by 13.1.1(16/3);
we test this here because we want to
ensure that this rule is tested for this
aspect; the general rule just tries one
example.

BD11001 (one example),
B611003 (ordinary tagged
types, interfaces)

Check that Pre'Class cannot be specified for a subprogram
that is not a primitive subprogram of some tagged type.

B-Test. Still need to try subprograms that
have parameters of tagged task types,
protected types, single tasks, and single
protected objects.

Negative B611003 Part 6

Negative All

Negative 1 Check that Pre'Class cannot be specified on an entry body.

2

(4/3) 1 StaticSem All

B611001 Part 7 Check that Post can be specified for a generic subprogram.

B611001, B611007 Part 7 Check that Post can be specified for an entry.

Negative Added by AI12-0045-1 (in TC1) B611001 All

Negative B611001 All

Negative All

Negative 1 Check that Post cannot be specified on an entry body.

2

(5/3) 1 StaticSem “Primitive” is required by 13.1.1(16/3). All

Negative B611003 All

Negative Confirmed by pending AI12-0182-1 7 B-Test.

Negative B611007 All

Negative Confirmed by pending AI12-0182-1 7 B-Test.

Negative B611007 All

Negative B611003 Part 7

Check that Pre'Class cannot be specified for packages,
objects, types, single tasks, or single protected objects.

B-Test. Still need to try tagged task
types, protected types, single tasks, and
single protected objects.

From 13.1.1(18/4), here to ensure it is
tested throughly.

BD11001 (one example),
B611004

Check that Pre'Class cannot be specified on a subprogram
body that is acting as a completion.

From AI12-0169-1 and another AI not
yet written; needs to be tested here, but
only part of next standard.

B-Test. For next standard (whatever it is:
Amendment or Revision)

Widely
Used

This is the Ada 95; any Ada 95
dispatching subprogram call implicitly
tests it.

C611001, C611B01
Check that Post can be specified for a non-instance
subprogram.

Added by AI12-0045-1 (2015
Corrigendum)

Still need a C-Test, can be included in
some other tests.

Still need a C-Test, can be included in
some other tests.

Check that Post cannot be specified for an instance that is a
subprogram.

Was a change from the original Ada
2012 text.

Check that Post cannot be specified for packages, objects,
types, single tasks, or single protected objects.

From 13.1.1(18/4), here to ensure it is
tested throughly.

BD11001 (one example),
B611002

Check that Post cannot be specified on a subprogram body
that is acting as a completion.

From AI12-0169-1 and another AI not
yet written; needs to be tested here, but
only part of next standard.

B-Test. For next standard (whatever it is:
Amendment or Revision)

Widely
Used

This is the Ada 95; any Ada 95
subprogram call implicitly tests it.

C611001, C611B02
Check that Post'Class can be specified for a non-instance
primitive subprogram of a tagged type.

A generic subprogram can never be
primitive. Nor can an instance of a
generic subprogram ever be a primitive
operation of a tagged type (the
occurrence of the instance freezes the
tagged type, making instance be too
late for freezing). Thus we don't need a
separate instance test here.

Check that Post'Class cannot be specified for a generic
subprogram.

Check that Post'Class can be specified for an entry of a
tagged task or protected type.

Check that Post'Class cannot be specified for an entry of an
untagged task or protected type.

Check that Post'Class can be specified for a protected
subprogram of a tagged protected type.

Check that Post'Class cannot be specified for a protected
subprogram of an untagged protected type.

“Primitive” is required by 13.1.1(16/3);
we test this here because we want to
ensure that this rule is tested for this
aspect; the general rule just tries one
example.

Check that Post'Class cannot be specified for a subprogram
that is not a primitive subprogram of some taagged type.

B-Test. Still need to try subprograms that
have parameters of tagged task types,
protected types, single tasks, and single
protected objects.

Negative B611003 Part 6

Negative All

Negative 1 Check that Post'Class cannot be specified on an entry body.

2

(6/3) NameRes 5 C-Test, not very common.

5 C-Test, just normal resolution.

Negative 5 B-Test, just normal resolution.

4 C-Test, not very common.

4 C-Test, just normal resolution.

Negative 4 B-Test, just normal resolution.

5 C-Test, not very common.

5 C-Test, just normal resolution.

Negative 5 B-Test, just normal resolution.

4 C-Test, not very common.

4 C-Test, just normal resolution.

Negative 4 B-Test, just normal resolution.

(7/4) NameRes Part 8

B611006 Part 6

7

Check that Post'Class cannot be specified for packages,
objects, types, single tasks, or single protected objects.

B-Test. Still need to try tagged task
types, protected types, single tasks, and
single protected objects.

From 13.1.1(18/4), here to ensure it is
tested throughly.

BD11001 (one example),
B611004

Check that Post'Class cannot be specified on a subprogram
body that is acting as a completion.

From AI12-0169-1 and another AI not
yet written; needs to be tested here, but
only part of next standard.

B-Test. For next standard (whatever it is:
Amendment or Revision)

Widely
Used

This is the Ada 95; any Ada 95
dispatching subprogram call implicitly
tests it.

The normal legal case will be checked
by any C-Test for the aspect.

Check that the expression of aspect Pre can have a boolean
type other than Boolean.

Check that the expression of aspect Pre can be resolved if
there is exactly one interpretation for a boolean type.

Check that the expression of aspect Pre is illegal if there is not
exactly one interpretation for a boolean type.

The normal legal case will be checked
by any C-Test for the aspect.

Check that the expression of aspect Pre'Class can have a
boolean type other than Boolean.

Check that the expression of aspect Pre'Class can be resolved
if there is exactly one interpretation for a boolean type.

Check that the expression of aspect Pre'Class is illegal if there
is not exactly one interpretation for a boolean type.

The normal legal case will be checked
by any C-Test for the aspect.

Check that the expression of aspect Post can have a boolean
type other than Boolean.

Check that the expression of aspect Post can be resolved if
there is exactly one interpretation for a boolean type.

Check that the expression of aspect Post is illegal if there is
not exactly one interpretation for a boolean type.

The normal legal case will be checked
by any C-Test for the aspect.

Check that the expression of aspect Post'Class can have a
boolean type other than Boolean.

Check that the expression of aspect Post'Class can be
resolved if there is exactly one interpretation for a boolean
type.

Check that the expression of aspect Post'Class is illegal if
there is not exactly one interpretation for a boolean type.

Essentially replaced by AI12-0113-1 (in
TC1)

C611001 (abstract
operation)

Check that, for a primitive operation of a type T, that the class-
wide precondition expression can make calls to other primitive
operations of type T.

C-Test, can be included in some other
tests.

Check that, for a primitive operation of a type T, that the class-
wide precondition expression can make calls to operations
with a parameter of T'Class.

C-Test, might come up in some other
context. B-Test includes an example, but
we still need to execute one.

Note: we don't need to worry about
F'Result in preconditions; it's not legal
there.

Check that, for a primitive operation of a type T, that the class-
wide precondition expression can convert parameters of type T
to T'Class to force redispatching. operations of type T.

C-Test, might come up in some other
context.

5 C-Test, not very likely to be wrong.

Negative B611006 All

Negative B611006 All

Part 8

B611006 Part 6

8

7

7

5 C-Test, not very likely to be wrong.

Negative B611006 All

Negative B611006 All

(8/3) NameRes The “shall resolve to” case. 7 C-Test.

The “expected type” case. 7

The “otherwise” case. 7 B-Test.

(9/3) 1 Legality B611005 All

Check that, for a primitive operation of a type T, that the class-
wide precondition expression can call subprograms that do not
have a parameter of type T or T'Class, and that global objects
of types not related to T can be used.

Made illegal by AI12-0113-1 (but
always was nonsense).

Check that, for a primitive operation of a type T, that the class-
wide precondition expression cannot make calls to
nonprimitive operations of type T or functions returning
T'Class.

T'Class case made illegal by AI12-
0113-1 (but always was nonsense).

Check that, for a primitive operation of a type T, that the class-
wide precondition expression cannot use a global object of
type T or T'Class as a parameter to a primitive operation of
type T.

C611001 (abstract
operation)

Check that, for a primitive operation of a type T, that the class-
wide postcondition expression can make calls to other
primitive operations of type T.

C-Test, can be included in some other
tests.

Check that, for a primitive operation of a type T, that the class-
wide postcondition expression can make calls to operations
with a parameter of T'Class.

C-Test, might come up in some other
context. The B-Test includes a case, but
we'd like to run one.

Check that, for a primitive function F with a controlling result of
type T, that the class-wide postcondition expression can make
calls to other primitive operations of type T using F'Result as a
parameter.

C-Test, can be included in some other
tests.

Check that, for a primitive function F with a controlling access
result of type T, that the class-wide postcondition expression
can make calls to other primitive operations of type T using
F'Result as a parameter.

C-Test, can be included in some other
tests.

Check that, for a primitive operation of a type T, that the class-
wide postcondition expression can convert parameters of type
T to T'Class to force redispatching. operations of type T.

C-Test, might come up in some other
context.

Check that, for a primitive operation of a type T, that the class-
wide postcondition expression can call subprograms that do
not have a parameter of type T or T'Class, and that global
objects of types not related to T can be used.

Made illegal by AI12-0113-1 (but
always was nonsense).

Check that, for a primitive operation of a type T, that the class-
wide postcondition expression cannot make calls to
nonprimitive operations of type T or functions of T'Class.

T'Class case made illegal by AI12-
0113-1 (but always was nonsense).

Check that, for a primitive operation of a type T, that the class-
wide postcondition expression cannot use a global object of
type T or T'Class as a parameter to a primitive operation of
type T.

Check that in a qualified expression used in a postcondition
expression, an overloaded prefix of 'Old can be resolved if the
prefix alone could be resolved.

Check that in an actual parameter expression used in a
postcondition expression, an overloaded prefix of 'Old can be
resolved if the prefix alone could be resolved.

C-Test. There are other cases that we
could try, but that's probably overkill.

Check that in a type conversion used in a postcondition
expression, an overloaded prefix of 'Old cannot be resolved,
even if only one interpretation would be legal.

Check that a Pre aspect cannot be specified on an abstract
subprogram.

B611005 All

B611005 All

B611005 All

2 Redundant C611001 All

7

C611001 All

7

(10/3) Legality Portion

(11/3) Legality Portion

(12/3) Legality Portion

(13/3) Legality Portion

(14/3) Legality Portion Just a connecting word.

(15/3) Legality 7

(16/3) Legality 8 B-Test.

6 C-Test. Try just calling the parent routine.

(17/3) Legality 6 C-Test.

8 B-Test.

(17.1/4) Legality Rule added by AI12-0131-1. 10

(17.2/4) Legality Generic boilerplate. 8 B-Test.

7 B-Test.

Check that a Pre aspect cannot be specified on a null
procedure.

Check that a Post aspect cannot be specified on an abstract
subprogram.

Check that a Post aspect cannot be specified on a null
procedure.

(The same objectives could have been
tested as “Negative” above)

Check that a Pre'Class aspect can be specified on an abstract
subprogram.

Check that a Pre'Class aspect can be specified on a null
procedure.

C-Test, can be included in some other
tests.

Check that a Post'Class aspect can be specified on an
abstract subprogram.

Check that a Post'Class aspect can be specified on a null
procedure.

C-Test, can be included in some other
tests.

Tested under paragraphs 15 and 16
below.

Tested under paragraphs 15 and 16
below.

Tested under paragraphs 15 and 16
below.

Tested under paragraphs 15 and 16
below.

Check that for an abstract type T that inherits homographs of a
subprogram S from two different ancestors with non-
conforming preconditions, the inherited S cannot be called by
a statically bound call.

B-Test. This is the main way to tell that S
is abstract.

Check that for a nonabstract type T that inherits homographs
of a subprogram S from two different ancestors with non-
conforming preconditions, the inherited S is illegal if it is not
overridden.

Check that for a nonabstract type T that inherits homographs
of a subprogram S from two different ancestors with non-
conforming preconditions, an overriding of the inherited S is
allowed.

Check that a renaming S1 that overrides an inherited routine
S2 is legal if all of the class-wide preconditions fully conform.

Check that a renaming S1 that overrides an inherited routine
S2 is illegal if any of the class-wide preconditions do not fully
conform.

Check that Pre'Class cannot be specified for an overriding of a
subprogram that does not specify Pre'Class.

B-Test. Such a Pre'Class never can have
any effect.

Check that an instance is illegal if the instance contains a
subprogram that specifies Pre'Class and overrides a primitive
operation of a formal type that does not specify Pre'Class.

Check that an instance is illegal if the instance contains a
renaming that overrides a primitive operation of a formal type
where all of the class-wide preconditions do not fully conform.

7 B-Test.

(18/4) 1 StaticSem Part 6

Part 6

9

2 StaticSem Portion

(18.1/4) StaticSem 7 C-Test.

7 C-Test.

7

7

(18.2/4) StaticSem Added by AI12-0113-1. B611006 All Only known case is tested.

B611006 All Only known case is tested.

(19/3) Definition 6 C-Test.

Check that an instance is illegal if it contains for a nonabstract
type T that inherits homographs of a subprogram S from two
different ancestors (at least one of which is a actual parameter
of the instance) with non-conforming preconditions, and the
inherited S is not overridden.

Modified by AI12-0113-1 and AI12-
0131-1. C611001 (parent, interface)

Check that a class-wide precondition is inherited by a
subprogram inherited from an ancestor that has a Pre'Class
aspect specified.

C-Test. Should check inheritance
subprograms inherited from (interface)
progenitors, and from various kinds of
types (private, tagged record). May occur
as part of other tests.

C611001 (parent, interface)

Check that a class-wide postcondition is inherited by a
subprogram inherited from an ancestor that has a Post'Class
aspect specified.

C-Test. Should check inheritance
subprograms inherited from (interface)
progenitors, and from various kinds of
types (private, tagged record). May occur
as part of other tests.

Rule added by AI12-0131-1 (in
Technical Corrigendum 1 for Ada 2012
[TC1]).

Check that a class-wide precondition is inherited as True for a
subprogram inherited from an ancestor that does not specify
Pre'Class.

C-Test. Most cases are undetectable, or
illegal by 6.1.1(17.2/4). But the case
where an overriding routine does not
have Pre'Class, is inherited from two
homographs, one with Pre'Class and one
without, should end up with a
precondition of True, not the inherited
Pre'Class.

The Post'Class part is untestable;
anding True has no effect.

Lead-in for the following paragraphs.
Added by AI12-0113-1.

Any inherited Pre'Class or Post'Class
will implicitly test the basic rule, thus we
only test unusual cases. Added by
AI12-0113-1.

Check that an inherited Pre'Class works properly if the
parameter names of an overriding subprogram are different
from the ancestor subprogram.

Check that an inherited Post'Class works properly if the
parameter names of an overriding subprogram are different
from the ancestor subprogram.

Check that an inherited Pre'Class works properly if the original
Pre'Class refers to the name of the ancestor subprogram.

C-Test. Probably have to use a recursive
call (ugh).

Check that an inherited Post'Class works properly if the
original Post'Class refers to the name of the ancestor
subprogram.

C-Test. One way to do this is to use
F'Result.

Check that a primitive subprogram is illegal if an inherited
Pre'Class is illegal.

Note: There might be other ways to
make a call illegal, but none are known
at this point. If any surface, we ought to
add tests for those cases as well.

Check that a primitive subprogram is illegal if an inherited
Post'Class is illegal.

Defines “enabled”. Any test of
preconditions or postconditions
implicitly tests the basic definition. We
check some of the corner cases.

Check that a specific precondition expression is not evaluated
if it is not enabled.

6 C-Test.

6 C-Test.

6 C-Test.

7

7

7

7

7 C-Test. From AARM 6.1.1(19.a/3).

7 C-Test. From AARM 6.1.1(19.a/3).

(20/3) Definition Portion

(21/3) Definition 9

(22/3) Definition 9

(22.1/4) Definition Added by AI12-0032-1 (in TC1). 9

(23/3) Definition 9

(24/3) Definition 9

(25/3) StaticSem Portion Lead-in for the following paragraphs.

Check that a class-wide precondition expression is not
evaluated if it is not enabled.

Check that a specific postcondition expression is not evaluated
if it is not enabled.

Check that a class-wide postcondition expression is not
evaluated if it is not enabled.

Check that a specific precondition is evaluated if it is enabled,
even if specific preconditions are Ignored at the site of the call.

C-Test. Try overall and individual
Assertion_Policies

Check that a class-wide precondition is evaluated if it is
enabled, even if preconditions are Ignored at the site of the
call.

C-Test. Try overall and individual
Assertion_Policies

Check that a specific postcondition is evaluated if it is enabled,
even if specific preconditions are Ignored at the site of the call.

C-Test. Try overall and individual
Assertion_Policies

Check that a class-wide postcondition is evaluated if it is
enabled, even if preconditions are Ignored at the site of the
call.

C-Test. Try overall and individual
Assertion_Policies

Check that a class-wide precondition expression is evaluated if
it is enabled, even if it is inherited by a an overriding
subprogram for which the applicable Assertion_Policy is
Ignore.

Check that a class-wide postcondition expression is evaluated
if it is enabled, even if it is inherited by a an overriding
subprogram for which the applicable Assertion_Policy is
Ignore.

Defines “potentially unevaluated”; this
is a lead-in.

We'll make the tests for 6.1.1(27/3)
here, as there are a number of cases
and they are much easier to enumerate
here.

Check that an Old attribute reference is illegal if the prefix
does not statically denote an object, and the use of Old
appears in any part of an if expression other than the first
condition.

B-Test. Make sure to try some legal
cases of each kind (statically denotes,
first condition), marked with OK. High
priority since this is likely to bite users,
and if checked incorrectly, could cause
incompatibilities down the road.

Check that an Old attribute reference is illegal if the prefix
does not statically denote an object, and the use of Old
appears as the dependent expression of a case expression.

B-Test. Make sure to try some legal
cases of each kind (statically denotes,
selecting expression), marked with OK.

Check that an Old attribute reference is illegal if the prefix
does not statically denote an object, and the use of Old
appears as the predicate of a quantified expression.

B-Test. Make sure to try some legal
cases where the prefix statically denotes
an object, marked with OK. There is a
tiny example in the discussion of AI12-
0032-1.

Check that an Old attribute reference is illegal if the prefix
does not statically denote an object, and the use of Old
appears as the right operand of a short circuit control form.

B-Test. Make sure to try some legal
cases of each kind (statically denotes,
left operand), marked with OK. Test both
and then and or else.

Check that an Old attribute reference is illegal if the prefix
does not statically denote an object, and the use of Old
appears as a membership choice other than the first in a
membership operation.

B-Test. Make sure to try some legal
cases of each kind (statically denotes,
first choice), marked with OK.

Negative 10

(26/4) StaticSem Subpart 10

10

9

9

9

9

9

10

9

Check that the prefix of an Old attribute cannot have a limited
type.

B-Test. Try limited private types whose
full type is nonlimited, as well as limited
records, and task types.

The effect of location of these implicit
constants is fleshed out in
6.1.1(35.1/4); finalization test objectives
are there. Modified by AI12-0032-1.

For X'Old given in the postcondition for a subprogram S, check
that X is evaluated at the start of the subprogram body for S.

C-Test. Use a prefix with a function call
(that uses TcTouch), and ensure that the
function is called before any local
variables are created. Try in Post and
Post'Class (including inherited
Post'Class).

For X'Old given in the postcondition for a subprogram S, check
that X'Old has the value of X at the start of the subprogram
body for S.

C-Test. Try to combine with the above.
Try a number of different kinds of types
and prefixes (function calls, array
indexing, dereferences).

For X'Old given in the postcondition for a task entry E, check
that X is evaluated at the start of the accept statement for E.

C-Test. Use a prefix with a function call
(that uses TcTouch), and ensure that the
function is called before any local
variables are created. Try in Post and
Post'Class (including inherited
Post'Class).

For X'Old given in the postcondition for a task entry E, check
that X'Old has the value of X at the start of the accept
statement for E.

C-Test. Try to combine with the above.
Try a number of different kinds of types
and prefixes (function calls, array
indexing, dereferences).

For X'Old given in the postcondition for a protected entry E,
check that X is evaluated at the start of the entry body for E.

C-Test. Use a prefix with a function call
(that uses TcTouch), and ensure that the
function is called before any local
variables are created. Try in Post and
Post'Class (including inherited
Post'Class).

For X'Old given in the postcondition for a protected entry E,
check that X'Old has the value of X at the start of the entry
body for E.

C-Test. Try to combine with the above.
Try a number of different kinds of types
and prefixes (function calls, array
indexing, dereferences).

For X'Old given in the postcondition for a protected
subprogram S, check that X'Old has the value of X at the start
of the subprogram body for S.

C-Test. Try to combine with the above.
Try a number of different kinds of types
and prefixes (function calls, array
indexing, dereferences).

For X'Old given in the postcondition for a subprogram S, check
that when X is controlled, X'Old is a copy of X initialized at the
start of the subprogram body for S.

C-Test. Use a non-limited controlled type,
and ensure that Adjust is called
appropriately before any local variables
are created. (Probably combine with
some of the tests for 6.1.1.(35.1/4), which
check finalization). Try in Post and
Post'Class (including inherited
Post'Class).

For X'Old given in the postcondition for a task entry E, check
that when X is controlled, X'Old is a copy of X initialized at the
start of the accept statement for E.

C-Test. Use a non-limited controlled type,
and ensure that Adjust is called
appropriately before any local variables
are created. (Probably combine with
some of the tests for 6.1.1.(35.1/4), which
check finalization). Try in Post and
Post'Class (including inherited Post'Class
using interfaces).

9

9

(26.1/4) StaticSem Portion

(26.2/4) StaticSem Portion

(26.3/4) StaticSem 6

6

6

(26.4/4) StaticSem Portion

(26.5/4) StaticSem All

(26.6/4) StaticSem Portion

(26.7/4) StaticSem Portion

(26.8/4) StaticSem

(26.9/4) StaticSem Portion

(26.10/4)1 StaticSem Added by AI12-0032-1 (in TC1). B611013 All

For X'Old given in the postcondition for a protected entry E,
check that when X is controlled, X'Old is a copy of X initialized
at the start of the entry body for E.

C-Test. Use a non-limited controlled type,
and ensure that Adjust is called
appropriately before any local variables
are created. (Probably combine with
some of the tests for 6.1.1.(35.1/4), which
check finalization). Try in Post and
Post'Class (including inherited Post'Class
using interfaces).

For X'Old given in the postcondition for a protected
subprogram S, check that when X is controlled, X'Old is a copy
of X initialized at the start of the subprogram body for S.

C-Test. Use a non-limited controlled type,
and ensure that Adjust is called
appropriately before any local variables
are created. (Probably combine with
some of the tests for 6.1.1.(35.1/4), which
check finalization). Try in Post and
Post'Class (including inherited Post'Class
using interfaces).

Added by AI12-0032-1 (in TC1); lead-in
for following paragraphs.

Added by AI12-0032-1 (in TC1); lead-in
for following paragraph.

Added by AI12-0032-1 (in TC1). This
mostly avoids semantic anomalies, not
much that is testable.

For X'Old given in the postcondition for a subprogram S, check
that X'Old has the accessibility of X when X is an access
parameter of S.

C-Test. We can use the accessibility
membership to test this, although we'll
need to compare both names to named
types of the appropriate level.

There are probably other cases that
could be tested, but it's hard to get
interested in dynamic accessibility!

For X'Old given in the postcondition for a subprogram S, check
that X'Old has the accessibility of X when X is an access
discriminant of a parameter of S.

C-Test. We can use the accessibility
membership to test this, although we'll
need to compare both names to named
types of the appropriate level.

For X'Old given in the postcondition for a subprogram S, check
that X'Old has the accessibility of X when X is an anonymous
access component of a parameter of S.

C-Test. We can use the accessibility
membership to test this, although we'll
need to compare both names to named
types of the appropriate level.

Added by AI12-0032-1 (in TC1); lead-in
for following paragraph.

Objective matches AARM 6.1.1.
(26.a/1). The messy declaration's only
semantic effect is on the tag. Added by
AI12-0032-1.

C611B01 (Post), C611B02
(Post'Class)

For X'Old given in the postcondition for a subprogram S, check
that X'Old has the same tag as X when X is a parameter P of
S, even if the tag of X is different than the nominal subtype of
P.

Added by AI12-0032-1 (in TC1); part of
the preceding paragraph.

Added by AI12-0032-1 (in TC1); lead-in
for following paragraph.

Added by AI12-0032-1 (in TC1). This
mostly allows us to understand corner
cases. All of the interesting objectives
are elsewhere in this subclause.

Added by AI12-0032-1 (in TC1); part of
the preceding paragraph.

For a discrete X, check that the nominal subtype of X'Old is
that of X.

2 NameRes

3 NameRes

(27/3) 1 Legality

Negative B611010 All

B611011 All

B611011 All

2 Legality B611012 All

B611012 All

B611012 All

1

3 Legality Subpart

(28/3) StaticSem Any use of Result will test.

Negative B611008 All

B611008 All Check that the prefix of a Result attribute cannot be an object.

B611008 All

(29/3) 1 StaticSem 9

9

2 NameRes

Added by AI12-0032-1 (in TC1), but
duplicates 6.1.1(8/3) [have asked ARG
about this]. The objectives are under
that paragraph.

Added by AI12-0032-1 (in TC1), but
duplicates 6.1.1(8/3) [have asked ARG
about this]. The objectives are under
that paragraph.

Widely
Used

Added by AI12-0032-1 (in TC1). Any
use of Old in a postcondition will test.

We only try cases associated with a
call of some sort; it's hard to imagine
what it would mean in any other case
(in a package body, for instance).

Check that the Old attribute cannot be used inside a
subprogram or entry body, or within an accept statement.

Check that the Old attribute cannot be used inside a
precondition expression.

Check that the Old attribute cannot be used inside of the
specification of a generic unit, other than in postconditions.

Check that the prefix of an Old attribute cannot contain a
Result attribute.

Check that the prefix of an Old attribute cannot contain
another Old attribute.

Check that the prefix of an Old attribute cannot contain the
loop parameter of an enclosing quantified expression.

This objective is for the next version of
Ada; it depends on AI12-0061-1. When
it can be tested, the priority is probably
9.

Check that the prefix of an Old attribute cannot contain a use
of the index parameter of an array aggregate.

B-Test. Made sure to test items used as
function parameters or array indices (not
just directly). Specifically: (for I in 1 .. 10
=> F(I)'Old).

The objectives for this are under
paragraphs 20-24 above. That's
backwards from the usual layout, but it
makes it a lot easier to see that all of
the cases are tested.

Widely
Used

Check that the prefix of a Result attribute cannot be a
procedure or entry.

Check that the prefix of a Result attribute cannot be a type,
package, task, or protected type.

Check that the F'Result attribute denotes the result of the
function F within a specific postcondition for F.

C-Test. (Might be combined with another
test?)

Check that the F'Result attribute denotes the result of the
function F within a class-wide postcondition for F.

C-Test. (Might be combined with another
test?)

Widely
Used

Any use of Result will test. We could try
fancy resolution tests, but those would
be of low value.

3

4

(30/3) Legality B611008 All

B611009 All

B611008 All

(30.1/5) StaticSem

Negative 1

1 Check that the prefix of a Index attribute cannot be an object.

1

1

(30.2/5) 1 StaticSem 1

1

1

1

2 StaticSem 1

(30.3./5) Legality 1

1

(31/3) Dynamic Portion Lead-in for the following paragraphs.

This wording conflicts with 6.1.1(7/4),
so we won't test it here. Asked ARG.
Simple tests in 6.1.1(7/4).

This wording conflicts with 6.1.1(7/4),
so we won't test it here. Asked ARG.
Simple tests in 6.1.1(7/4).

Check that F'Result is not allowed in the postcondition
expression for some other function.

Check that F'Result is not allowed in the body of F, including in
a pragma Assert.

Check that F'Result is not allowed in a precondition expression
for F.

Widely
Used

Any use of Index will test. Added by
AI12-0143-1, Amendment 1 for 2012.

Check that the prefix of a Index attribute cannot be a
subprogram.

B-Test. Ultra-low priority until
Amendment 1 for Ada 2012 is issued.

B-Test. Ultra-low priority until
Amendment 1 for Ada 2012 is issued.

Check that the prefix of a Index attribute cannot be a type,
package, task, or protected type.

B-Test. Ultra-low priority until
Amendment 1 for Ada 2012 is issued.

Check that the prefix of a Index attribute cannot be an entry
that doesn't have a family index.

B-Test. Ultra-low priority until
Amendment 1 for Ada 2012 is issued.

Added by AI12-0143-1, Amendment 1
for 2012.

Check that the E'Index attribute denotes the entry index for the
call of entry E within a specific precondition for E.

C-Test. Ultra-low priority until
Amendment 1 for Ada 2012 is issued.
(Might combine with some other test??)

Check that the E'Index attribute denotes the entry index for the
call of entry E within a class-wide precondition for E.

C-Test. Ultra-low priority until
Amendment 1 for Ada 2012 is issued.
(Might combine with some other test??)

Check that the E'Index attribute denotes the entry index for the
call of entry E within a specific postcondition for E.

C-Test. Ultra-low priority until
Amendment 1 for Ada 2012 is issued.
(Might combine with some other test??)

Check that the E'Index attribute denotes the entry index for the
call of entry E within a class-wide postcondition for E.

C-Test. Ultra-low priority until
Amendment 1 for Ada 2012 is issued.
(Might combine with some other test??)

Check that the nominal subtype of E'Index is that of the entry
index.

C-Test. Ultra-low priority until
Amendment 1 for Ada 2012 is issued.
Test case coverage of a case expression
that uses the index.

Check that E'Index is not allowed in the entry body or acccept
statement for E, including in a pragma Assert.

B-Test. Ultra-low priority until
Amendment 1 for Ada 2012 is issued.

Check that E'Index is not allowed in the precondition or
postcondition for some other entity than E.

B-Test. Ultra-low priority until
Amendment 1 for Ada 2012 is issued.

(32/3) Dynamic C611A02 All

9 C-Test. A TCTouchy test.

9 C-Test. A TCTouchy test.

9 C-Test. A TCTouchy test.

9 C-Test. A TCTouchy test.

8 C-Test. A TCTouchy test.

8 C-Test. A TCTouchy test.

8 C-Test. A TCTouchy test.

C611A01 All

(33/3) Dynamic C611A03 Part 7

7

7

7

Check that an enabled specific precondition of a subprogram
S is evaluated after evaluating the parameters of a call on S
and before S is called, and that Assertion_Error is raised if the
expression evaluates to False.

Check that an enabled specific precondition of a task entry E
is evaluated after evaluating the parameters of a call on E and
before E is called, and that Assertion_Error is raised if the
expression evaluates to False.

Check that an enabled specific precondition of a protected
entry E is evaluated after evaluating the parameters of a call
on E and before E is called, and that Assertion_Error is raised
if the expression evaluates to False.

Check that an enabled specific precondition of a protected
subprogram S is evaluated after evaluating the parameters of
a call on S and before S is called, and that Assertion_Error is
raised if the expression evaluates to False.

Check that a specific precondition of a subprogram S that is
not enabled is not evaluated during a call on S.

Check that a specific precondition of a task entry E that is not
enabled is not evaluated during a call on E.

Check that a specific precondition of a protected entry E that is
not enabled is not evaluated during a call on E.

Check that a specific precondition of a protected subprogram
S that is not enabled is not evaluated during a call on S.

Check that an enabled specific precondition of a subprogram
S raises Assertion_Error if it evaluates to False, even if a
class-wide precondition for S evaluated to True.

We could have checked a case with two
Pre'Class exprs and a Pre, but it doesn't
seem worth the extra level of declarations
(Jeff's test did that, but it was very
unrealistic).

Check that an enabled class-wide precondition of a
subprogram S is evaluated after evaluating the parameters of
a call on S and before S is called, and that Assertion_Error is
raised if all such expressions evaluate to False.

C-Test. A TCTouchy test. Need to try
Pre'Class inherited from an interface.

Check that an enabled class-wide precondition of a task entry
E is evaluated after evaluating the parameters of a call on E
and before E is called, and that Assertion_Error is raised if all
such expressions evaluate to False.

C-Test. A TCTouchy test. This can
happen if the task type has an interface
with Pre'Class. Careful: only one class-
wide precondition needs to be evaluated
if it is True.

Check that an enabled class-wide precondition of a protected
entry E is evaluated after evaluating the parameters of a call
on E and before E is called, and that Assertion_Error is raised
if all such expressions evaluate to False.

C-Test. A TCTouchy test. This can
happen if the protected type has an
interface with Pre'Class. Careful: only
one class-wide precondition needs to be
evaluated if it is True.

Check that an enabled class-wide precondition of a protected
subprogram S is evaluated after evaluating the parameters of
a call on S and before S is called, and that Assertion_Error is
raised if all such expressions evaluate to False.

C-Test. A TCTouchy test. This can
happen if the protected type has an
interface with Pre'Class. Careful: only
one class-wide precondition needs to be
evaluated if it is True.

C611A03 Part 7

6

6

6

8

7

7

7

C611A01 All

(34/5) 1 Dynamic

2 Dynamic

3 Dynamic

4 Dynamic 7

Check that if a subprogram S has multiple applicable class-
wide preconditions, that all such expressions evaluate to False
before Assertion_Error is raised.

C-Test. Need to try Pre'Class
expressions from interfaces.

Check that if a task entry E has multiple applicable class-wide
preconditions, that all such expressions evaluate to False
before Assertion_Error is raised.

C-Test. Pre'Class expressions have to be
inherited from multiple interfaces, thus
the relatively low priority.

Check that if a protected entry E has multiple applicable class-
wide preconditions, that all such expressions evaluate to False
before Assertion_Error is raised.

C-Test. Pre'Class expressions have to be
inherited from multiple interfaces, thus
the relatively low priority.

Check that if a protected subprogram S has multiple applicable
class-wide preconditions, that all such expressions evaluate to
False before Assertion_Error is raised.

C-Test. Pre'Class expressions have to be
inherited from multiple interfaces, thus
the relatively low priority.

Check that a class-wide precondition of a subprogram S that is
not enabled is not evaluated during a call on S.

C-Test. A TCTouchy test. Careful: only
one class-wide precondition needs to be
evaluated if it is True.

Check that a class-wide precondition of a task entry E that is
not enabled is not evaluated during a call on E.

C-Test. A TCTouchy test. This can
happen if the task type has an interface
with Pre'Class. Careful: only one class-
wide precondition needs to be evaluated
if it is True.

Check that a class-wide precondition of a protected entry E
that is not enabled is not evaluated during a call on E.

C-Test. A TCTouchy test. This can
happen if the protected type has an
interface with Pre'Class. Careful: only
one class-wide precondition needs to be
evaluated if it is True.

Check that a class-wide precondition of a protected
subprogram S that is not enabled is not evaluated during a call
on S.

C-Test. A TCTouchy test. This can
happen if the protected type has an
interface with Pre'Class. Careful: only
one class-wide precondition needs to be
evaluated if it is True.

Check that if all applicable class-wide preconditions evaluated
to False, Assertion_Error is raised even if an enabled specific
precondition of S evaluates to True.

We could have checked a case with two
Pre'Class exprs and a Pre, but it doesn't
seem worth the extra level of declarations
(Jeff's test did that, but it was very
unrealistic).

Not
Testable

This is non-determinism in the
evaluation, which is not testable (but
needs to be taken into account in other
tests).

Not
Testable

AI12-0166-1 (not in TC1) makes this
deterministic and thus testable.
Although I don't know of any easily
testable effects of a protected action.
Anyway, no test until 2018 at the
earliest.

AI12-0166-1 (not in TC1) originally
deleted this sentence, but clearly the
task objective is not covered by the
previous sentence so that was a
mistake.

Check that a task entry E evaluates its preconditions before
checking that the entry is open; in particular, a precondition
check can fail immediately even for a closed entry.

C-Test. Possibly combine with one of the
earlier tests.

7

(35/3) 1 Dynamic 10

7

7

7

9

7

7

7

2, 3 Dynamic C611A02 All

8 C-Test. A TCTouchy test.

8 C-Test. A TCTouchy test.

8 C-Test. A TCTouchy test.

Check that a protected entry E evaluates its preconditions
before checking that the entry is open; in particular, a
precondition check can fail immediately even for a closed
entry.

C-Test. Possibly combine with one of the
earlier tests.

Check that no postcondition check is performed for a
subprogram S if S propagates an exception.

C-Test. Try postconditions that would fail
if evaluated. Try Post, Post'Class, and
inherited Post'Class.

Check that no postcondition check is performed for a task
entry E if E propagates an exception.

C-Test. Try postconditions that would fail
if evaluated. Try Post, Post'Class, and
inherited Post'Class.

Check that no postcondition check is performed for a protected
entry E if E propagates an exception.

C-Test. Try postconditions that would fail
if evaluated. Try Post, Post'Class, and
inherited Post'Class.

Check that no postcondition check is performed for a protected
subprogram S if S propagates an exception.

C-Test. Try postconditions that would fail
if evaluated. Try Post, Post'Class, and
inherited Post'Class.

Check that by-copy in-out and out parameters are not modified
if a postcondition check fails for a subprogram call.

C-Test. Try a variety of by-copy
parameter types. Try Post, Post'Class,
and inherited Post'Class.

Check that by-copy in-out and out parameters are not modified
if a postcondition check fails for a task entry call.

C-Test. Try a variety of by-copy
parameter types. Try Post, Post'Class,
and inherited Post'Class.

Check that by-copy in-out and out parameters are not modified
if a postcondition check fails for a protected entry call.

C-Test. Try a variety of by-copy
parameter types. Try Post, Post'Class,
and inherited Post'Class.

Check that by-copy in-out and out parameters are not modified
if a postcondition check fails for a protected subprogram call.

C-Test. Try a variety of by-copy
parameter types. Try Post, Post'Class,
and inherited Post'Class.

Note that we can't determine precisely
when copy-back of parameters occurs
(they can't be controlled), so we can
only test that the evaluation happens
between the end of the body and the
continuation of execution.

Check that an enabled specific postcondition of a subprogram
S is evaluated after completing the subprogram body but
before continuing execution after the call of S, and that
Assertion_Error is raised if the expression evaluates to False.

Check that an enabled specific postcondition of a task entry E
is evaluated after completing the subprogram body but before
continuing execution after the call of E, and that
Assertion_Error is raised if the expression evaluates to False.

Check that an enabled specific postcondition of a protected
entry E is evaluated after completing the subprogram body but
before continuing execution after the call of E, and that
Assertion_Error is raised if the expression evaluates to False.

Check that an enabled specific postcondition of a protected
subprogram S is evaluated after completing the subprogram
body but before continuing execution after the call of S, and
that Assertion_Error is raised if the expression evaluates to
False.

C611A03 Part 7

7

7

7

C611A03 All 7

7

7

7

8 C-Test. A TCTouchy test.

7

7

7

Check that an enabled class-wide postcondition of a
subprogram S is evaluated after completing the subprogram
body but before continuing execution after the call of S, and
that Assertion_Error is raised if any such expression evaluates
to False.

C-Test. A TCTouchy test. Need to try
Post'Class inherited from an interface.

Check that an enabled class-wide postcondition of a task entry
E is evaluated after completing the subprogram body but
before continuing execution after the call of E, and that
Assertion_Error is raised if any such expression evaluates to
False.

C-Test. A TCTouchy test. This can
happen if the task type has an interface
with Post'Class. Careful: only one class-
wide postcondition needs to be evaluated
if it is False.

Check that an enabled class-wide postcondition of a protected
entry E is evaluated after completing the subprogram body but
before continuing execution after the call of E, and that
Assertion_Error is raised if any such expression evaluates to
False.

C-Test. A TCTouchy test. This can
happen if the task type has an interface
with Post'Class. Careful: only one class-
wide postcondition needs to be evaluated
if it is False.

Check that an enabled class-wide postcondition of a protected
subprogram S is evaluated after completing the subprogram
body but before continuing execution after the call of S, and
that Assertion_Error is raised if any such expression evaluates
to False.

C-Test. A TCTouchy test. This can
happen if the task type has an interface
with Post'Class. Careful: only one class-
wide postcondition needs to be evaluated
if it is False.

Check that if multiple enabled class-wide postconditions apply
to a subprogram S, check that they are all evaluated if they all
evaluate to True.

C-Test. A TCTouchy test. Still need to try
inheriting Post'Class from 1 or more
interfaces.

Check that if multiple enabled class-wide postconditions apply
to a task entry E, check that they are all evaluated if they all
evaluate to True.

C-Test. A TCTouchy test. This can
happen if the task type has an interface
with Post'Class. Try both adding a
Post'Class to an overriding routine, or
inheriting Post'Class from 1 or more
interfaces.

Check that if multiple enabled class-wide postconditions apply
to a protected entry E, check that they are all evaluated if they
all evaluate to True.

C-Test. A TCTouchy test. This can
happen if the task type has an interface
with Post'Class. Try both adding a
Post'Class to an overriding routine, or
inheriting Post'Class from 1 or more
interfaces.

Check that if multiple enabled class-wide postconditions apply
to a protected subprogram S, check that they are all evaluated
if they all evaluate to True.

C-Test. A TCTouchy test. This can
happen if the task type has an interface
with Post'Class. Try both adding a
Post'Class to an overriding routine, or
inheriting Post'Class from 1 or more
interfaces.

Check that a specific postcondition of a subprogram S that is
not enabled is not evaluated during a call on S.

Check that a specific postcondition of a task entry E that is not
enabled is not evaluated during a call on E.

C-Test. A TCTouchy test. This can
happen if the task type has an interface
with Post'Class.

Check that a specific postcondition of a protected entry E that
is not enabled is not evaluated during a call on E.

C-Test. A TCTouchy test. This can
happen if the protected type has an
interface with Post'Class.

Check that a specific postcondition of a protected subprogram
S that is not enabled is not evaluated during a call on S.

C-Test. A TCTouchy test. This can
happen if the protected type has an
interface with Post'Class.

8

7

7

7

C611A01 All

C611A01 All

4 Dynamic

5 Dynamic

(35.1/4) 1 Dynamic 8 C-Test.

2 10

9

9

Check that a class-wide postcondition of a subprogram S that
is not enabled is not evaluated during a call on S.

C-Test. A TCTouchy test. Careful: only
one class-wide postcondition needs to be
evaluated if it is False.

Check that a class-wide postcondition of a task entry E that is
not enabled is not evaluated during a call on E.

C-Test. A TCTouchy test. This can
happen if the task type has an interface
with Post'Class. Careful: only one class-
wide postcondition needs to be evaluated
if it is False.

Check that a class-wide postcondition of a protected entry E
that is not enabled is not evaluated during a call on E.

C-Test. A TCTouchy test. This can
happen if the protected type has an
interface with Post'Class. Careful: only
one class-wide postcondition needs to be
evaluated if it is False.

Check that a class-wide postcondition of a protected
subprogram S that is not enabled is not evaluated during a call
on S.

C-Test. A TCTouchy test. This can
happen if the protected type has an
interface with Post'Class. Careful: only
one class-wide postcondition needs to be
evaluated if it is False.

Check that if any applicable class-wide postcondition
evaluates to False, Assertion_Error is raised even if an
enabled specific postcondition of S evaluates to True.

We could have checked a case with two
Post'Class exprs and a Post, but it
doesn't seem worth the extra
declarations.

Check that if an enabled specific postcondition valuates to
False, Assertion_Error is raised even if all enabled applicable
class-wide postconditions of S evaluate to True.

We could have checked a case with two
Post'Class exprs and a Post, but it
doesn't seem worth the extra
declarations.

Not
Testable

This is non-determinism in the
evaluation, which is not testable (but
needs to be taken into account in other
tests).

Not
Testable

This is non-determinism in the
evaluation, which is not testable (but
needs to be taken into account in other
tests).

Added by AI12-0032-1. The objective
doesn't seem to be justified by
9.5.2(24), but that seems wrong. I've
asked the ARG.

Check that if a postcondition check fails for a task entry E,
Assertion_Error is raised in both the accept_statement and the
entry call for E.

The protected action part is untestable;
the only effect of not doing this is to
introduce race conditions – which are
not testable.

For X'Old given in the postcondition for a subprogram S, check
that when X is controlled, X'Old is finalized last, after any local
objects that need finalization and after the postcondition
check, for a subprogram call of S.

C-Test; combine with the initialization
tests for 6.1.1(26/4).

For X'Old given in the postcondition for a task entry E, check
that when X is controlled, X'Old is finalized last, after any local
objects that need finalization and after the postcondition
check, for an entry call of E.

C-Test; combine with the initialization
tests for 6.1.1(26/4).

For X'Old given in the postcondition for a protected entry E,
check that when X is controlled, X'Old is finalized last, after
any local objects that need finalization and after the
postcondition check, for an entry call of S.

C-Test; combine with the initialization
tests for 6.1.1(26/4).

9

(36/3) 9 C-Test.

7 C-Test.

7 C-Test.

7 C-Test.

9 C-Test.

6 C-Test. The task must have an interface.

6

6

9 C-Test.

7 C-Test.

7 C-Test.

7 C-Test.

9 C-Test.

6 C-Test. The task must have an interface.

6

For X'Old given in the postcondition for a protected
subprogram S, check that when X is controlled, X'Old is
finalized last, after any local objects that need finalization and
after the postcondition check, for a subprogram call of S.

C-Test; combine with the initialization
tests for 6.1.1(26/4).

Check that the exception raised by the evaluation or failure of
a specific precondition check for a subprogram cannot be
handled inside of the subprogram body.

Check that the exception raised by the evaluation or failure of
a specific precondition check for a task entry E cannot be
handled inside of the accept statement for E.

Check that the exception raised by the evaluation or failure of
a specific precondition check for a protected entry cannot be
handled inside of the entry body.

Check that the exception raised by the evaluation or failure of
a specific precondition check for a protected subprogram
cannot be handled inside of the subprogram body.

Check that the exception raised by the evaluation or failure of
a class-wide precondition check for a subprogram cannot be
handled inside of the subprogram body.

Check that the exception raised by the evaluation or failure of
a class-wide precondition check for a task entry E cannot be
handled inside of the accept statement for E.

Check that the exception raised by the evaluation or failure of
a class-wide precondition check for a protected entry cannot
be handled inside of the entry body.

C-Test. The protected type must have an
interface.

Check that the exception raised by the evaluation or failure of
a class-wide precondition check for a protected subprogram
cannot be handled inside of the subprogram body.

C-Test. The protected type must have an
interface.

Check that the exception raised by the evaluation or failure of
a specific postcondition check for a subprogram cannot be
handled inside of the subprogram body.

Check that the exception raised by the evaluation or failure of
a specific postcondition check for a task entry E cannot be
handled inside of the accept statement for E.

Check that the exception raised by the evaluation or failure of
a specific postcondition check for a protected entry cannot be
handled inside of the entry body.

Check that the exception raised by the evaluation or failure of
a specific postcondition check for a protected subprogram
cannot be handled inside of the subprogram body.

Check that the exception raised by the evaluation or failure of
a class-wide postcondition check for a subprogram cannot be
handled inside of the subprogram body.

Check that the exception raised by the evaluation or failure of
a class-wide postcondition check for a task entry E cannot be
handled inside of the accept statement for E.

Check that the exception raised by the evaluation or failure of
a class-wide postcondition check for a protected entry cannot
be handled inside of the entry body.

C-Test. The protected type must have an
interface.

6

(37/4) 1 Dynamic

C611A02 All

C611A02 All

C611A03 All

C611A02 All

C611A02 All

2 Dynamic 9

3, 4 Dynamic Added by AI12-0113-1 (in TC1). C611A03 All

8

C611A03, C611B02 All

Check that the exception raised by the evaluation or failure of
a class-wide postcondition check for a protected subprogram
cannot be handled inside of the subprogram body.

C-Test. The protected type must have an
interface.

Widely
Used

For normal subprogram calls, the
expressions evaluated are obvious and
tested any time the aspects are used.
We don't have to implementation
inheritance for task and protected
operations, as only interfaces can be
inherited for them.

For a dispatching call, check that the specific precondition
evaluated is that of the actual body invoked.

For a dispatching call, check that the specific postcondition
evaluated is that of the actual body invoked.

For a dispatching call, check that the class-wide postcondition
evaluated is that of the actual body invoked.

For a call on a subprogram S whose implementation is
inherited from the primitive subprogram A of an ancestor,
check that the specific precondition that applies to A is
checked for a call on S.

For a call on a subprogram S whose implementation is
inherited from the primitive subprogram A of an ancestor,
check that the specific postcondition that applies to A is
checked for a call on S.

We'll test the unusual case (the normal
case should be previously tested). Note
that this case can't happen for task or
protected entries or subprograms –
implementations can't be inherited.

For a subprogram S that is inherited from an ancestor type A
of a type T, check that class-wide postconditions inherited from
a homograph of S that is primitive for an interface that is a
progenitor of T but not of A are checked.

C-Test. We're trying to check that a
wrapper is used in this (unusual) case;
the original body must NOT check the
added Post'Class.

For a nonabstract tagged type T and a primitive subprogram S
of T and that has a class-wide postcondition expression E,
check that for a call of S that is statically bound to type T, calls
to primitive operations of T within E invoke the bodies
appropriate for T, even if the tag of the controlling parameter
object is not T.

For an interface type T and a primitive subprogram S of T and
that has a class-wide postcondition expression E, check that
for a call of S that is statically bound to a nonbastract type NT
derived from T, calls to primitive operations of T within E
invoke the bodies appropriate for NT, even if the tag of the
controlling parameter object is not NT.

C-Test. The tag of the controlling
parameter should identify some
descendant of T that has overriding
bodies for the subprograms mentioned in
the postcondition. Could try task and
protected interfaces here.

For a nonabstract tagged type T and a primitive subprogram S
of T and that has a class-wide postcondition expression E,
check that for a dynamically tagged dispatching call of S, calls
to primitive operations of T within E invoke the bodies
appropriate for the controlling tag, even if it is not T.

8

(38/4) 1 Dynamic C611A03 Part 7

2,3 Dynamic Added by AI12-0113-1 (in TC1). C611A03 All

8

C611A03 All

8

(39/3) Dynamic 9

9

9

9

8

For an interface type T and a primitive subprogram S of T and
that has a class-wide postcondition expression E, check that
for a dynamically tagged dispatching call of S, calls to primitive
operations of T within E invoke the bodies appropriate for the
controlling tag, even if it is not T.

C-Test. The tag of the controlling
parameter should identify some
descendant of T that has overriding
bodies for the subprograms mentioned in
the postcondition. Could try task and
protected interfaces here.

We treat statically bound calls as
“widely used” for this objective; it's hard
to imagine what else they would do,
and almost any test of class-wide
preconditions will try them.

Check that the class-wide precondition of a dispatching call is
that associated with the denoted subprogram, even if the body
of a descendant operation is invoked.

C-Test. This can be detected by having
an additional Pre'Class on the
descendant subprogram which is True
while the original Pre'Class is False; the
dispatching call should still raise
Assertion_Error. We still need to check
interfaces.

For a nonabstract tagged type T and a primitive subprogram S
of T and that has a class-wide precondition expression E,
check that for a call of S that is statically bound to type T, calls
to primitive operations of T within E invoke the bodies
appropriate for T, even if the tag of the controlling parameter
object is not T.

For an interface type T and a primitive subprogram S of T and
that has a class-wide precondition expression E, check that for
a call of S that is statically bound to a nonbabstract type NT
derived from T, calls to primitive operations of T within E
invoke the bodies appropriate for NT, even if the tag of the
controlling parameter object is not NT.

C-Test. The tag of the controlling
parameter should identify some
descendant of T that has overriding
bodies for the subprograms mentioned in
the postcondition. Could try task and
protected interfaces here.

For a nonabstract tagged type T and a primitive subprogram S
of T and that has a class-wide precondition expression E,
check that for a dynamically tagged dispatching call of S, calls
to primitive operations of T within E invoke the bodies
appropriate for the controlling tag, even if it is not T.

For an interface type T and a primitive subprogram S of T and
that has a class-wide precondition expression E, check that for
a dynamically tagged dispatching call of S, calls to primitive
operations of T within E invoke the bodies appropriate for the
controlling tag, even if it is not T.

C-Test. The tag of the controlling
parameter should identify some
descendant of T that has overriding
bodies for the subprograms mentioned in
the postcondition. Could try task and
protected interfaces here.

For a call via an access-to-subprogram value created with
S'Access, check that the specific precondition of S is checked
if it is enabled.

C-Test. Try different subprograms called
via a single access type.

For a call via an access-to-subprogram value created with
S'Access, check that the specific postcondition of S is checked
if it is enabled.

C-Test. Try different subprograms called
via a single access type.

For a call via an access-to-subprogram value created with
S'Access, check that all enabled class-wide preconditions of S
are checked.

C-Test. Try different subprograms called
via a single access type.

For a call via an access-to-subprogram value created with
S'Access, check that all enabled class-wide postconditions of
S are checked.

C-Test. Try different subprograms called
via a single access type.

For a call via an anonymous access-to-subprogram parameter
value created with S'Access, check that the specific
precondition of S is checked if it is enabled.

C-Test. Try different subprograms
passed to the same subprogram
parameter.

8

8

8

6

6

6

6

(40/3) NonNormative A note.

For a call via an anonymous access-to-subprogram parameter
value created with S'Access, check that the specific
postcondition of S is checked if it is enabled.

C-Test. Try different subprograms
passed to the same subprogram
parameter.

For a call via an anonymous access-to-subprogram parameter
value created with S'Access, check that all enabled class-wide
preconditions of S are checked.

C-Test. Try different subprograms
passed to the same subprogram
parameter.

For a call via an anonymous access-to-subprogram parameter
value created with S'Access, check that all enabled class-wide
postconditions of S are checked.

C-Test. Try different subprograms
passed to the same subprogram
parameter.

For a call via an access-to-protected-subprogram value
created with S'Access, check that the specific precondition of
S is checked if it is enabled.

C-Test. Try different subprograms called
via a single access type.

For a call via an access-to-protected-subprogram value
created with S'Access, check that the specific postcondition of
S is checked if it is enabled.

C-Test. Try different subprograms called
via a single access type.

For a call via an access-to-protected-subprogram value
created with S'Access, check that all enabled class-wide
preconditions of S are checked.

C-Test. Try different subprograms called
via a single access type.

For a call via an access-to-protected-subprogram value
created with S'Access, check that all enabled class-wide
postconditions of S are checked.

C-Test. Try different subprograms called
via a single access type.

Paragraphs: Objectives with tests: Total objectives:

1 59 78 190 249 0

Must be tested Objectives with Priority 10 7

Objectives with Priority 9 33

Important to test Objectives with Priority 8 24

Objectives with Priority 7 68

Valuable to test Objectives with Priority 6 28

Objectives with Priority 5 8

Ought to be tested Objectives with Priority 4 6

Objectives with Priority 3 0

Worth testing Objectives with Priority 2 0

Not worth testing Objectives with Priority 1 16

Total: 190

78

 Completely: 60

Objectives
to test:

Objectives with
submitted tests:

Objectives covered by new
tests since ACATS 2.6

	Objectives

