
Coverage for ISO/IEC 8652:2012 in ACATS 3.x and 4.x
Clause 3.2.4

Objective's Submitted tests

Clause Para. Lines Kind Subkind Notes Tests New Priority Objective Text Objective notes (will need work).

3.2.4 1/3 1 Definitions “predicate aspect”

2 Definitions “predicate specification”

3 General Nothing to test here.

2/3 NameRes B324001 All Check that a predicate expression must have a boolean type.

B324001 Part 4

5 C-Test (or subtest in a B-Test).

3/3 1 Legality Subpart

6

Negative B324001 All

2 Definitions Lead-in “applies”

4/4 StaticSem 7

6

6

5/3 C324003 All

6/4 Deleted Deleted by AI12-0071-1.

7/3 Definitions Lead-in “enabled” and “disabled” predicates.

8/3 StaticSem Lead-in

A Key to Kinds and subkinds is found on the sheet named Key. Tests new to ACATS 3.0 are shown in bold; ACATS 3.1 in bold italic; ACATS 4.0 in blue bold; ACATS 4.1 in blue bold italic. ACATS 4.2 in green bold italic.

Check that a predicate expression that makes a call on an 
overloaded function will resolve if exactly one such function 
has a boolean type.

B324001 tries this, but we should try an 
executable C-Test. Low priority because 
this is normal resolution and should be 
similar to conditions in an if statement (and 
many other cases).

Check that a predicate expression can have a boolean type 
other than Boolean.

Any legal predicate specification will 
test.

Check that a dynamic predicate can be specified for a private 
type.

C-Test. (Not completely clear that we 
intended this to work, and it appears that it 
could also be specified for the full 
definition, which is weird – sent an e-mail 
to the ARG).

Check that a predicate cannot be specified on entities other 
than subtype or type declarations.

Modified by AI12-0071-1 and AI12-
0099-1. We test here as this gets 
complicated otherwise.

Check that the predicates that apply to the parent subtype and 
progenitors, if any, are tested as part of the predicate test for a 
derived type.

C-Test. Use a membership to trigger 
evaluation of the predicate test to avoid 
issues with disabled predicates.

Check that the predicates that apply to the progenitors, if any, 
are tested as part of the predicate test for a task type.

C-Test. Use a membership to trigger 
evaluation of the predicate test to avoid 
issues with disabled predicates. Be sure to 
try a single task object.

Check that the predicates that apply to the progenitors, if any, 
are tested as part of the predicate test for a protected type.

C-Test. Use a membership to trigger 
evaluation of the predicate test to avoid 
issues with disabled predicates. Be sure to 
try a single protected object.

Check that the predicates that apply to the subtype_mark of a 
subtype_declaration, if any, are tested as part of the predicate 
test for a subtype.



9/3 StaticSem C324001 Part 8

10/3 StaticSem C324001 Part 8

11/3 StaticSem C324004, C324005 Part 5

C324004, C324005 Part 5

3

3

3

3

C324004, C324005 All

C324004, C324005 All

C324004, C324005 All

Check that a static predicate specified directly for a type or 
subtype is checked when it is enabled (the applicable 
assertion policy is Check).

C-Test. Still need test using specific form 
of checks, still need to test types. We test 
this here as the default assertion policy is 
implementation-defined, so we can't 
assume that checks are commonly used – 
and that also makes this critical, thus the 
priority. This objective is about enabling 
the check, so we only need to check 
subtype conversions for it.

Check that a dynamic predicate specified directly for a type or 
subtype is checked when it is enabled (the applicable 
assertion policy is Check).

C-Test. Still need to test using the specific 
form of the pragma; still need to test on 
types. Also see the previous objective.

Check that a static predicate specified directly for a type or 
subtype is not checked when it is disabled (the applicable 
assertion policy is Ignore).

C-Test. Still need to test that the policy at 
the point of the check is irrelevant (that is, 
try it with “Check”). Less important since 
most users disable checks globally. 
Combine with below??

Check that a dynamic predicate specified directly for a type or 
subtype is not checked when it is disabled (the applicable 
assertion policy is Ignore).

C-Test. Still need to test that the policy at 
the point of the check is irrelevant (that is, 
try it with “Check”). Less important since 
most users disable checks globally. 
Combine with below??

Check that a static predicate inherited for a subtype is 
checked even when it is disabled if the subtype has its own 
predicate that is enabled.

C-Test. Check using both the global 
assertion policy and using the specific 
form of the pragma. This is low priority 
because assertion policy is usually applied 
globally (compiler switch) or on a package 
basis, so it's unlikely that the policy would 
be different in practice.

Check that a dynamic predicate inherited for a subtype is 
checked even when it is disabled if the subtype has its own 
predicate that is enabled.

C-Test. Check using both the global 
assertion policy and using the specific 
form of the pragma. See the previous item 
for priority discussion.

Check that a static predicate inherited for a subtype is not 
checked even when it is enabled if the subtype has its own 
predicate that is disabled.

C-Test. Check using both the global 
assertion policy and using the specific 
form of the pragma. See the previous item 
for priority discussion.

Check that a dynamic predicate inherited for a subtype is not 
checked even when it is enabled if the subtype has its own 
predicate that is disabled.

C-Test. Check using both the global 
assertion policy and using the specific 
form of the pragma. See the previous item 
for priority discussion.

Check that a static predicate specified directly for a type or 
subtype still is evaluated for a membership even if it is 
disabled (the applicable assertion policy is Ignore).

Check that a dynamic predicate specified directly for a type or 
subtype still is evaluated for a membership even if it is 
disabled (the applicable assertion policy is Ignore).

Check that a static predicate specified directly for a type or 
subtype still is evaluated for the Valid attribute even if it is 
disabled (the applicable assertion policy is Ignore).



C324004, C324005 All

C324004, C324005 All

12/4 StaticSem 6

6

5

5

3

3

3

3

13/3 StaticSem 7

7

Check that a dynamic predicate specified directly for a type or 
subtype still is evaluated for the Valid attribute even if it is 
disabled (the applicable assertion policy is Ignore).

Check that a static predicate specified directly for a type or 
subtype still determines the items iterated by a for loop on the 
type or subtype even if it is disabled (the applicable assertion 
policy is Ignore).

AI12-0099-1 clarifies the wording to 
ensure it covers all kinds of types.

Check that a static predicate specified for the parent or 
progenitor of a derived type is checked for the derived type 
when predicate of the parent or progenitor is enabled.

C-Test. Check using both the global 
assertion policy and the specific form of 
the pragma. These inherited cases are 
considerably less important.

Check that a dynamic predicate specified for the parent or 
progenitor of a derived type is checked for the derived type 
when the predicate of the parent or progenitor is enabled.

C-Test. Check using both the global 
assertion policy and the specific form of 
the pragma.

Check that a static predicate specified for the progenitor of a 
task or protected type is checked for the type when the 
predicate of the progenitor is enabled.

C-Test. Check using both the global 
assertion policy and the specific form of 
the pragma. Don't forget to try a single 
task and single protected object.

Check that a dynamic predicate specified for the progenitor of 
a task or protected type is checked for the type when the 
predicate of the progenitor is enabled.

C-Test. Check using both the global 
assertion policy and the specific form of 
the pragma. Don't forget to try a single 
task and single protected object.

Check that a static predicate specified for the parent or 
progenitor of a derived type is checked for the derived type 
even when it is disabled if the predicate of some other parent 
or progenitor is enabled.

C-Test. Check using both the global 
assertion policy and the specific form of 
the pragma. Low priority because policy is 
usually applied globally or on a package 
basis, so having different policies is 
unlikely.

Check that a dynamic predicate specified for the parent or 
progenitor of a derived type is checked for the derived type 
even when the predicate is disabled if the predicate of some 
other parent or  progenitor is enabled.

C-Test. Check using both the global 
assertion policy and the specific form of 
the pragma. Low priority because policy is 
usually applied globally or on a package 
basis, so having different policies is 
unlikely.

Check that a static predicate specified for the progenitor of a 
task or protected type is checked for the type even when the 
predicate is disabled if the predicate of some other progenitor 
is enabled.

C-Test. Check using both the global 
assertion policy and the specific form of 
the pragma. Low priority because policy is 
usually applied globally or on a package 
basis, so having different policies is 
unlikely.

Check that a dynamic predicate specified for the progenitor of 
a task or protected type is checked for the type even when the 
predicate is disabled if the predicate of some other progenitor 
is enabled.

C-Test. Check using both the global 
assertion policy and the specific form of 
the pragma. Low priority because policy is 
usually applied globally or on a package 
basis, so having different policies is 
unlikely.

Check that a static predicate specified for subtype S is 
checked for a subtype directly of S that does have any 
predicates of its own when the predicate of S is enabled.

C-Test. Check using both the global 
assertion policy and the specific form of 
the pragma.

Check that a dynamic predicate specified for subtype S is 
checked for a subtype directly of S that does have any 
predicates of its own when the predicate of S is enabled.

C-Test. Check using both the global 
assertion policy and the specific form of 
the pragma.



14/3 StaticSem 5

5

4

4

6

6

14.1/4 Legality Subpart

Negative 8 B-Test.

14.2/4 StaticSem Portion

14.3/4 NameRes Added by AI12-054-2. 8 B-Test.

5 C-Test. This is normal resolution.

15/3 Definitions “predicate static”

16/3 Legality 6

Negative B324001 All

Negative B324001 All

17/3 Legality 6

Negative B324001 All

Negative B324001 All

18/3 Legality 6

Check that a static predicate specified for the parent or 
progenitor of a derived type is not checked for the derived type 
when the predicates of the parent and all progenitors are 
disabled.

C-Test. Check using both the global 
assertion policy and the specific form of 
the pragma.

Check that a dynamic predicate specified for the parent or 
progenitor of a derived type is not checked for the derived type 
when the predicates of the parent and all progenitors are 
disabled.

C-Test. Check using both the global 
assertion policy and the specific form of 
the pragma.

Check that a static predicate specified for the progenitor of a 
task or protected type is not checked for the type when the 
predicate of all of the progenitors are disabled.

C-Test. Check using both the global 
assertion policy and the specific form of 
the pragma.

Check that a dynamic predicate specified for the progenitor of 
a task or protected type is not checked for the type when the 
predicate of all of the progenitors are disabled.

C-Test. Check using both the global 
assertion policy and the specific form of 
the pragma.

Check that a static predicate specified for subtype S is not 
checked for a subtype directly of S that does have any 
predicates of its own when the predicate of S is disabled.

C-Test. Check using both the global 
assertion policy and the specific form of 
the pragma.

Check that a dynamic predicate specified for subtype S is not 
checked for a subtype directly of S that does have any 
predicates of its own when the predicate of S is disabled.

C-Test. Check using both the global 
assertion policy and the specific form of 
the pragma.

Added by AI12-054-2. Any legal 
predicate failure aspect will test.

Check that the Predicate_Failure aspect cannot be specified 
on a type or subtype that does not also have a 
Static_Predicate or Dynamic_Predicate aspect specified.

Added by AI12-054-2. Will be tested by 
the 14.3/3 and 31.1/4 rules.

Check that the expression of a Predicate_Failure aspect must 
have type String.

Check that a predicate expression that makes a call on an 
overloaded function will resolve if exactly one such function 
has type String.

Check that the expression of a Static_Predicate can be a 
static expression.

C-Test. Use a membership test to check 
the value of the expression.

Check that the expression of a Static_Predicate cannot 
contain a non-static function call.

Some other cases are allowed by other 
bullets.

Check that the expression of a Static_Predicate cannot 
contain a non-static call to a arithmetic operator, including 
predefined operators operating on the current instance.

Check that the expression of a Static_Predicate can be a 
predicate static membership.

C-Test. Use a membership test to check 
the value of the expression.

Check that the expression of a Static_Predicate cannot be a 
non-static membership whose tested expression is not the 
current instance.

Check that the expression of a Static_Predicate cannot be a 
membership where one or more choices is non-static even 
when the tested expression is the current instance.

Check that the expression of a Static_Predicate can be a 
predicate static case expression.

C-Test. Use a membership test to check 
the value of the expression.



Negative 7 B-Test.

Negative B324001 All

19/3 Legality 6

Negative B324001 All

Negative B324001 All

20/3 Legality 6

Negative B324001 All

21/3 Legality 6

Negative B324001 All

22/3 Legality 6

Negative B324001 All

23/3 Legality B324001 Part 5

24/3 Legality 6

25/3 Legality B324002, B324003 All

B324002 All

B324002, B324003 All

26/3 Legality B324002, B324003 All

27/3 Legality B324002, B324003 All

B324002, B324003 All

Check that the expression of a Static_Predicate cannot be a 
non-static case expression whose tested expression is not the 
current instance.

Check that the expression of a Static_Predicate cannot be a 
case expression where one or more dependent_expressions 
is non-static even when the selecting expression is the current 
instance.

Check that the expression of a Static_Predicate can be a 
predicate static ordering or equality expression.

C-Test. Use a membership test to check 
the value of the expression.

Check that the expression of a Static_Predicate cannot be a 
non-static call to a predefined ordering or equality operator if 
neither operand is the current instance.

Check that the expression of a Static_Predicate cannot be a 
call to a predefined ordering or equality operator where one 
operand is non-static even when the other operand is the 
current instance.

AI12-0099-1 changes this to enumerate 
the operators as “boolean logical 
operator” doesn't include not.

Check that the expression of a Static_Predicate can be a 
predicate static expression using a boolean operator and, or, 
xor, or not.

C-Test. Use a membership test to check 
the value of the expression.

Check that the expression of a Static_Predicate cannot be a 
call to a predefined boolean operator and, or, xor, or not if 
either operand is not predicate static.

Check that the expression of a Static_Predicate can be a short 
circuit control form with predicate static operands.

C-Test. Use a membership test to check 
the value of the expression.

Check that the expression of a Static_Predicate cannot be a 
short circuit control form if either operand is not predicate 
static.

Check that the expression of a Static_Predicate can be a 
parenthesized expression with a predicate static operand.

C-Test. Use a membership test to check 
the value of the expression.

Check that the expression of a Static_Predicate cannot be a 
parenthesized expression if the operand is not predicate static.

Check that a predicate cannot be specified for an incomplete 
subtype.

B-Test. Still need to check for a subtype of 
a limited view.

Check that predicate cannot mention any subtype to which the 
predicate applies.

B-Test. Try the example in the AARM, at a 
minimum.

Check that an index subtype of an unconstrained array 
declaration cannot denote a subtype with a predicate.

Check that the discrete range of a slice or index constraint 
cannot denote a subtype with a predicate.

Note: It does not appear possible to create 
a generic to test this in an instance, as we 
cannot get the type of the array correct 
without causing some other error.

Check that the discrete subtype definition of a constrained 
array declaration, entry declaration, or entry index specification 
cannot denote a subtype with a predicate.

Check that the prefix of First, Last, and Range cannot be a 
subtype with a predicate.

Check that the subtype name given in a for loop cannot have a 
dynamic predicate.

Check that the subtype name given in a for loop cannot be 
nonstatic and have a static predicate.



28/3 Legality B324002 All

B324002 All

29/3 Legality Subpart

29.1/4 Dynamic 7 C-Test.

7 C-Test.

7 C-Test.

6 C-Test.

7 C-Test.

7 C-Test.

29.2/4 Dynamic Lead-in Rules clarified by AI12-0071-1.

29.3/4 Dynamic Rules new from AI12-0071-1. 9

9

29.4/4 Dynamic Lead-in Rules new from AI12-0071-1.

29.5/4 Dynamic Rules new from AI12-0071-1. 7

Check that the discrete choice of an array aggregate cannot 
name a non-static subtype that has a static predicate.

Note: It does not appear possible to create 
a generic to test this in an instance, as we 
cannot get the type of the array correct 
without causing some other error.

Check that the discrete choice of an array aggregate cannot 
name a subtype that has a dynamic predicate.

Note: It does not appear possible to create 
a generic to test this in an instance, as we 
cannot get the type of the array correct 
without causing some other error.

Generic boilerplate; test in previous 
objectives.

Rule moved here from 3.2.4(33/3) by 
AI12-0071-1.

Check that Program_Error is raised if the actual for a formal 
discrete or integer type F has a predicate, and the body of the 
generic unit uses F as the prefix of First, Last, or Range.

Check that Program_Error is raised if the actual for a formal 
discrete or integer type F has a predicate, and the body of the 
generic unit uses F as the index subtype of an unconstrained 
array declaration.

Check that Program_Error is raised if the actual for a formal 
discrete or integer type F has a predicate, and the body of the 
generic unit uses F as the discrete range of a slice or index 
constraint.

Check that Program_Error is raised if the actual for a formal 
discrete or integer type F has a predicate, and the body of the 
generic unit uses F as the discrete subtype definition of a 
constrained array declaration, entry declaration, or entry index 
specification.

Check that Program_Error is raised if the actual for a formal 
discrete or integer type F has a predicate, and the body of the 
generic unit uses F as the subtype name given in a for loop.

Check that Program_Error is raised if the actual for a formal 
discrete or integer type F has a predicate, and the body of the 
generic unit uses F as the discrete choice of an array 
aggregate.

Check that for a subtype conversion to a subtype with 
predicates enabled,  if a constraint or null exclusion fails, no 
predicates are evaluated.

C-Test. This can only be usefully tested for 
dynamic predicates. Care is needed to 
avoid triggering 11.4.2(27/3). We'll only 
test this for subtype conversions and 
memberships, hopefully the same check 
code is used for all.

Check that for a membership test,  if a constraint or null 
exclusion fails, no predicates are evaluated.

C-Test. This can only be usefully tested for 
dynamic predicates. Care is needed to 
avoid triggering 11.4.2(27/3).

Check that for a type conversion to a derived type with 
predicates enabled,  if a predicate of the parent or progenitor 
fails, no predicates of the type are evaluated.

C-Test. This can only be usefully tested for 
dynamic predicates. Care is needed to 
avoid triggering 11.4.2(27/3). We'll only 
test this for subtype conversions, hopefully 
the same check code is used for all.



6

29.6/4 Dynamic Rules new from AI12-0071-1. 9

C324003 Part 7

29.7/4 Dynamic Any predicate check will test this.

30/3 Dynamic Lead-in

31/4 1 Dynamic C324001, C324002 All

2 Redundant Part of above objective.

3 Dynamic C324002 All

4 Dynamic C324001 All

31.1/4 1 Dynamic Added by AI12-0054-2. C324001 All

2 Dynamic C324003 Part 4

8 C-Test.

C324003 Part 4

3 Impl-Def

32/4 Deleted Deleted by AI12-0071-1.

33/4 Deleted Deleted by AI12-0071-1.

34/3 NonNormative A note.

35/3 NonNormative Another note.

Check that for a type conversion to a task or protected type 
with predicates enabled,  if a predicate of a progenitor fails, no 
predicates of the type are evaluated.

C-Test. This can only be usefully tested for 
dynamic predicates. Care is needed to 
avoid triggering 11.4.2(27/3). We'll only 
test this for subtype conversions, hopefully 
the same check code is used for all.

Check that for a subtype conversion to a subtype S with 
predicates enabled,  if a predicate of the parent subtype fails, 
no predicates directly specified for S are evaluated.

C-Test. This can only be usefully tested for 
dynamic predicates. Care is needed to 
avoid triggering 11.4.2(27/3). We'll only 
test this for subtype conversions and 
memberships, hopefully the same check 
code is used for all.

Check that for a membership test against a subtype S,  if a 
predicate of the parent subtype fails, no predicates directly 
specified for S are evaluated.

C-Test. This can only be usefully tested for 
dynamic predicates. Care is needed to 
avoid triggering 11.4.2(27/3). Jeff's test 
tries only one example.

Widely 
Used

Revised by AI12-0071-1. This is really 
redundant and arguably belongs to 4.6, 
but it would be weird not to test this 
here.

Check that enabled predicate checks are performed on every 
subtype conversion.

Check that enabled predicate checks are performed upon 
return for by-reference in out and out parameters.

Check that for an uninitialized object or allocator with any 
default component expressions, a predicate check is made.

Check that a failed predicate check for a type or subtype with 
a predicate but no Predicate_Failure aspect raises 
Assertion_Error.

Effectively checked by any “normal” 
predicate check failure test.

Check that a failed predicate check for a type or subtype with 
a predicate and a Predicate_Failure aspect that raises an 
exception propagates that exception.

C-Test. Test covers subtypes, ought to try 
types at some point.

Check that a failed predicate check for a type or subtype with 
a predicate and a Predicate_Failure aspect that does not raise 
an exception propagates Assertion_Error with the string value 
resulting from the evaluation of the Predicate_Failure aspect.

Check that a failed predicate check for a type or subtype with 
a predicate and a Predicate_Failure aspect that inherits 
additional predicates from another type or subtype that also 
has a Predicate_Failure aspect evaluated the 
Predicate_Failure aspect belonging to the predicate that failed.

C-Test. Test covers subtypes, ought to try 
types at some point.

Untestable, the string could be 
anything.



36/4 NonNormative Another note.

37/4 NonNormative Another note.

38/4 NonNormative Another note.

39/4 NonNormative An example.

40/4 NonNormative Another example.

41/4 NonNormative Lead-in Another example.

42/4 NonNormative Part of the above example.

43/4 NonNormative Part of the above example.

44/4 NonNormative Part of the above example.

45/4 NonNormative Part of the above example.

46/4 NonNormative Part of the above example.

47/4 NonNormative Part of the above example.

48/4 NonNormative Part of the above example.

49/4 NonNormative Part of the above example.

50/4 NonNormative Part of the above example.

51/4 NonNormative Part of the above example.



Paragraphs: Objectives with tests: Total objectives:

1 62 39 58 88 0

Must be tested Objectives with Priority 10 0

Objectives with Priority 9 3

Important to test Objectives with Priority 8 5

Objectives with Priority 7 11

Valuable to test Objectives with Priority 6 17

Objectives with Priority 5 9

Ought to be tested Objectives with Priority 4 5

Objectives with Priority 3 8

Worth testing Objectives with Priority 2 0

Not worth testing Objectives with Priority 1 0

Total: 58

39

  Completely: 30

Objectives 
to test:

Objectives with 
submitted tests:

Objectives covered by new 
tests since ACATS 2.6


	Objectives

