
Coverage for ISO/IEC 8652:2012 and subsequent corrections in ACATS 3.x and 4.x
Clauses 4.1.3 - 4.4

Objective's Submitted tests

Clause Para. Lines Kind Subkind Notes Tests New Priority Objective Text Objective notes (will need work).

4.1.3 (1) Redundant

(2) Syntax

(3) Syntax

(4) Definitions Expanded Name

(5) NameRes 6

6 B-Test (?)

6

(6) NameRes Portion Lead-in for next rule.

(7) NameRes C41301A

Negative 4

Negative 4 B-Test. Try many kinds of prefixes.

(8) NameRes Portion Lead-in for next rule.

(9) NameRes

5

(9.1/2) NameRes Portion Lean-in for next rule.

(9.2/3) 1 NameRes C413001 All

A Key to Kinds and subkinds is found on the sheet named Key. Tests new to ACATS 3.0 are shown in bold; ACATS 3.1 in bold italic; ACATS 4.0 in blue bold; ACATS 4.1 in blue bold italic. ACATS 4.2 in green bold italic.

Widely 
Used

Check that if the prefix of a selected component denotes an 
enclosing construct, it is not interpreted as a component 
reference.

C-Test. Try F.C inside a a function F that 
returns a record R with a component C, 
while the function has an object C of the 
same type. This should resolve and not 
make a recursive call.

Check that if the prefix of a selected component denotes an 
enclosing protected type, it is not interpreted as an external 
reference to a protected entry or subprogram.

Check that if the prefix of a selected component denotes an 
enclosing construct, it is not interpreted as a prefix view.

B-Test (?) or a C-Test like the one 
described above.

Check that for the reference L.R, if R represents a 
component or discriminant of a record type, then L can 
represent an object or value of that type.

Check that for the reference L.R, if R represents a 
discriminant of a private, task, or protected type, then L can 
represent an object or value of that type.

C-Test. Try cases like those found in 
C41301A. Simple cases probably exist 
in many other ACATS tests, thus the low 
priority.

B940005 contains a single 
example.

Check that for the reference L.R, if R represents a 
component of a protected type, and L represents an object 
or value of that type, the reference is illegal.

C41306B (func, access-to-
task), C41306C (func, 
access-to-task), C413006 
(not access)

Check that for the reference L.R, if L represents a task 
value or object, R can represent a task entry or family.

Check that for the reference L.R, if L represents a protected 
value or object, R can represent a protected entry or 
subprogram.

C-Test. Simple cases are scattered 
throughout the ACATS; we mainly need 
to test examples like those in C41306x.

These objectives mostly cover the first 
three lines.

Check that for the reference L.R, if L represents an object 
or value of a tagged type T, that R may represent a 
subprogram with a first parameter of the type T that is 
declared immediately in the declarative region of an 
ancestor of T.



C413002 All

C413001 All

C413002 All

C413003 All

C413004 All

C413003 All

C413004 All

8

Negative B413004 Part 3

Check that for the reference L.R, if L represents an object 
or value of an access type designating a tagged type T, that 
R may represent a subprogram with a first parameter of the 
type T that is declared immediately in the declarative region 
of an ancestor of T.

Check that for the reference L.R, if L represents an object 
or value of a tagged type T, that R may represent a 
subprogram with a first parameter of a classwide type that 
covers T that is declared immediately in the declarative 
region of an ancestor of T.

Check that for the reference L.R, if L represents an object 
or value of an access type designating a tagged type T, that 
R may represent a subprogram with a first parameter of a 
classwide type that covers T that is declared immediately in 
the declarative region of an ancestor of T.

Check that for the reference L.R, if L represents an object 
or value of a tagged type T, that R may represent a 
subprogram with a first access parameter that designates T 
that is declared immediately in the declarative region of an 
ancestor of T.

Check that for the reference L.R, if L represents an object 
or value of an access type designating a tagged type T, that 
R may represent a subprogram with a first access 
parameter that designates T that is declared immediately in 
the declarative region of an ancestor of T.

Check that for the reference L.R, if L represents an object 
or value of a tagged type T, that R may represent a 
subprogram with a first access parameter that designates a 
classwide type that covers T that is declared immediately in 
the declarative region of an ancestor of T.

Check that for the reference L.R, if L represents an object 
or value of an access type designating a tagged type T, that 
R may represent a subprogram with a first access 
parameter that designates a classwide type that covers T 
that is declared immediately in the declarative region of an 
ancestor of T.

Check that for the reference L.R, if L represents an object 
or value of an access type designating a tagged type T with 
the value null, and R represents an appropriate subprogram 
for a prefixed view, that Constraint_Error is raised when the 
name L.R is evaluated.

C-Test. Check that this happens even 
for a first access parameter that does 
not exclude null (this would have to be a 
classwide parameter). [This is required 
as this is a dereference.]

Check that for the reference L.R, if L represents an object 
or value of an non-access untagged type T or an access 
type designating an untagged type T, and R represents a 
subprogram with a first parameter of T, the reference is 
illegal even if the subprogram is primitive for T.

B-Test. Try other types, including 
protected, task, limited record, float, 
fixed, decimal, modular, enum. But this 
isn't very important.



Negative B413004 Part 2

2 Negative 8 B-Test.

3 Negative 7 B-Test.

4 B413001 All

Negative 3

5

6 StaticSem Subpart

C413005 All

Negative 8 B-Test.

6 Definitions Prefixed view.

(10) NameRes Portion Lead-in for the following rules.

(11) NameRes Subpart Tested in the next two rules.

(12) NameRes 3

Check that for the reference L.R, if L represents an object 
or value of an non-access untagged type T or an access 
type designating an untagged type T, and R represents a 
subprogram with a first access parameter designating T, the 
reference is illegal even if the subprogram is primitive for T.

B-Test. Try other types, including 
protected, task, limited record, float, 
fixed, decimal, modular, enum. But this 
isn't very important.

Check that for the reference L.R, if L represents an object of 
a tagged type T or an access type designating a tagged 
type T, and R represents a subprogram with a first 
parameter of the type T or a classwide type that is covered 
by T that is not declared immediately in the declarative 
region of an ancestor of T, the reference is illegal.

Check that for the reference L.R, if L represents an object of 
a tagged type T or an access type designating a tagged 
type T, and R represents a subprogram with some 
parameter other than the first parameter of the type T and a 
first parameter of a non-access untagged type that is 
declared immediately in the declarative region of an 
ancestor of T, the reference is illegal.

Check that the reference L.R is not intepreted as a prefixed 
view if the designator R represents a component of the type 
T visible at the point of the reference.

Check that the reference L.R can be intepreted as a 
prefixed view if the designator R represents a component of 
the type T that is not visible at the point of the reference.

C-Test. B431001 includes this case, 
which is why the priority is low.

Widely 
Used

A new rule in Ada 2012, necessary to 
allow ordinary Ada83-style prefix calls 
to tagged task and protected 
operations. We don't need to test this 
separately as any test of tagged task or 
protected types will necessarily make 
prefix calls.

Prefixed view calls are tested in 
6.4(10.1/2).

Check that a prefixed view is the name of a subprogram 
(with the first parameter omitted from the profile) that can be 
renamed and passed as a generic formal parameter.

Check that a call of a prefixed view cannot repeat the first 
parameter in the parameter list.

Check that for the reference L.R, if L represents the name 
of a package, then R can name any visible declaration in 
the package.

C-Test: commonly used but no obvious 
test to report here.



2

4

5 C-Test. An untested Ada 83 objective.

Negative 4 B-Test.

Negative 3

(13) 1 NameRes C41307D 4

5 C-Test. An untested Ada 83 objective.

Negative 4 B-Test.

Negative 4 B-Test.

Negative 4 B-Test.

2 6 B-Test.

(13.1/2) Legality Subpart

Negative B413002 All

C41320A (enum), C41321A 
(derived Boolean), 
C41322A (signed integer), 
C41323A (float), C41324A 
(fix), C41325A (array), 
C41326A (access), 
C41327A (private), 
C41328A (inherited subs, 
derived type)

Check that for the reference L.R, if L represents the name 
of a package, then R can name any implicitly declared 
declarations in the visible part of the package.

C-Test. Need modular types and 
decimal fixed types; maybe types 
derived from interfaces as well.

If L represents the name of a package, check that for the 
reference L.R given in the private part or body of package L 
or the private part or body of a public child of L or in a 
private child of L, then R can name any declaration in the 
package private part of the package.

C-Test. Expanded names don't appear 
in the relevant Section 10 tests, so we 
need them here.

If L represents a renaming of a package P, check that for 
the reference L.R, R can name any visible declaration in the 
package P.

Check that for the reference L.R, if L represents the name 
of a package, then R cannot name any declaration of the 
package not visible at the point of the reference.

Check that for the reference L.R, if L represents the name 
of an enclosing construct, then R cannot name an entity 
declared other than in that enclosing construct.

B-Test. Try items declared in nested and 
outer scopes.

Check that an expanded name can reference a declaration 
in a callable construct, type declaration, accept statement, 
block statement, or loop statement if it is given within that 
construct.

C-Test (need to test a protected 
function, protected procedure, and entry 
body).

Check that for reference L.R, L can be an operator symbol if 
R is a declaration in that operator and the reference occurs 
within the operator.

Check that an expanded name is illegal if it tries to 
reference a declaration inside of a callable construct, accept 
statement, block statement, or loop statement outside of 
that construct by naming the construct in its prefix.

Check that an expanded name is illegal if it tries to 
reference a declaration inside of a type declaration outside 
of the type declaration by naming the type in its prefix.

Check that a family index is not allowed in an expanded 
name for an access statement or entry body.

Check that if expanded name occurs within a callable 
construct, and the prefix of an expanded name denotes 
more than one enclosing callable construct, the expanded 
name is illegal.

Prefixed view calls are tested in 
6.4(10.1/2).

Check that the prefixed view L.R is illegal if the first 
parameter of R is an access parameter and L is not an 
aliased view of an object.



(13.2/2) Legality Subpart

Negative B413003 All

Negative B413003 All

(14) Dynamic

C41304A

(15) Dynamic C41304B

(16) NonNormative Start of examples.

(17/2) NonNormative

(18) NonNormative

(19) NonNormative End of examples.

4.1.4 (1) Redundant

(2) Syntax

2 Check that the prefix of an attibute can be another attribute.

(3) Syntax

(4) Syntax

(5) Syntax

(6) 1 NameRes 4

4

2 5

5

Prefixed view calls are tested in 
6.4(10.1/2).

Check that the prefixed view L.R is illegal if the first 
parameter of R is a parameter with mode in out or out and L 
does not denote a variable.

Check that the prefixed view L.R is illegal if the first 
parameter of R is a parameter with an access-to-variable 
type and L does not denote a variable.

Widely 
Used

Testing the evaluation of the name will 
necessarily test evaluation of the prefix.

Check that L.R raises Constraint_Error when L has the 
access value null.

Check that L.R raises Constraint_Error when L denotes a 
record object with discriminant values such that component 
R does not exist.

C41404A ('Image'First, 
etc.)

C-Test. Check that T'Class'something 
and T'Base'something work. These may 
be covered by othere existing tests 
scattered throughout the test suite.

C41401A (Callable, 
Terminated, First, Last, 
Length, Range)

Check that the prefix of attributes that do not apply to 
objects of an access types can be interpreted as an implicit 
dereference.

C-Test. Test Component_Size, 
Constrained, Tag, and Valid. Test by 
determining that a prefix with the value 
null raises Constraint_Error (and 
resolves).

C41402A (Address, Size, 
First_Bit, Last_Bit, Position)

Check that the prefix of attributes that apply to objects of an 
access types are not interpreted as an implicit dereference.

C-Test. Test Access, Alignment, 
Storage_Size, Unchecked_Access. Test 
by determining that a prefix with the 
value null does not Constraint_Error.

Check that the prefix of attributes that apply to objects but 
not functions is interpreted as a parameterless function call.

C-Test. Test Callable, Terminated, First, 
Last, Length, Range, Size, First_Bit, 
Last_Bit, Position, Alignment, 
Storage_Size, Component_Size, 
Constrained, Tag, Valid.

Check that the prefix of attributes that apply to both objects 
and functions is never interpreted as a parameterless 
function call.

C-Test. The Address attribute: check 
that the function is not called. B-Test: 
The prefix of Access can't be a function 
for a access-to-object type. (Is this a 
good idea?) 



Negative 4

(7) NameRes 1

(8) Legality Negative 2

(9/3) 1 StaticSem Subpart

2 Added by AI05-0006-1. 4 B-Test.

3 Added by AI05-0006-1. 4 B-Test.

(10) Redundant

(11) Dynamic Subpart 3

(12/1) Impl-Def

(13) NonNormative A note.

(14/2) NonNormative Another note.

(15) NonNormative Start of examples.

(16) NonNormative End of examples.

4.1.5 (1/3) StaticSem Portion

(2/3) StaticSem Negative B415001 All

Subpart

(3/3) Definitions

(4/3) Syntax

(5/3) NameRes Subpart

These are the only rules for most 
attributes.

B87B26A (First_Bit, 
Last_Bit, Position, Callable, 
Terminated, First, Last, 
Length, Range, Count)

Check that information about the kind of entity expected as 
the prefix of attributes without extra resolution rules is not 
used to resolve the prefix.

B-Test(s). Test any untested attributes 
for which an example can be made (all 
of the ones mentioned/tested for 
previous objectives are candidates; 
there probably are others). AARM 
4.1.4(6.d-h) give some examples for the 
Valid attribute.

Check that the expression of a First, Last, Length, or Range 
attribute can be resolved even if there are interpretations of 
a non-integer type.

C-Test. I believe this objective cannot be 
tested because of the requirement that 
this expression be static (we need user-
defined functions to get interesting 
overloading).

B36201A has a single test 
case for Length.

Check that the expression of a First, Last, Length, or Range 
attribute must be static.

B-Test. Test the other three attributes, 
and try cases where the non-staticness 
isn't obvious (as for a constant defined 
of a generic formal integer type).

This is untestable by itself; it will be 
tested as part of testing each attribute.

Check that a First, Last, First_Valid, or Last_Valid attribute 
can be used as the expression of a case statement, and 
coverage is required for the base subtype of its type.

Check that a Pred, Succ, Val, or Input attribute can be used 
as the expression of a case statement, and coverage is 
required for the base subtype of its type.

For attributes designating objects, check that evaluating the 
attribute evaluates the prefix.

C-Test. This is slightly covered by the 
tests for the objectives of 4.1.4(6), thus 
the low priority.

Not 
Testable

The only effect of this is that a test 
checking that Small is not defined for 
floating point types is incorrect.

This entire subclause is new in Ada 
2012. The rule is tested below.

Check that the name given for an Implicit_Dereference 
aspect must be that of an access discriminant for the 
associated type.

This will necessarily be used in any C-
Tests testing other rules here.

This will necessarily be used in any C-
Tests testing other rules here.



(5.1/4) StaticSem Subpart

(6/3) StaticSem

(7/3) 1 7 C-Test.

2 6 C-Test.

3 Redundant 6 C-Test.

(8/3) 1 Dynamic 3

2 Dynamic C415001 All

3 Dynamic Portion

4 Dynamic C415001 Part 4

C415001 All

B415002 All

(9/3) NonNormative

(10/3) NonNormative

(11/3) NonNormative

(12/3) NonNormative

(13/3) NonNormative

(14/3) NonNormative

(15/3) NonNormative

4.1.6 (1/3) StaticSem Negative B416001 All

(2/3) 1 StaticSem Negative B416001 Part 4

Added by AI12-0138-1. The rules are 
enumerated in 13.1.1(18.2-5/4), and 
the objectives are there.

Not clear that any semantic effect of 
this beyond those caused by the 
dynamic rules (there doesn't seem to 
be any other sensible meaning).

Note: The “if not overridden” wording 
doesn't need to be tested, as 5.1/4 
makes it illegal to override.

Check that a generalized reference can be used for an 
object of a derived type that inherits the 
Implicit_Dereference aspect from its parent type.

Check that a generalized reference for a derived type refers 
to the new discriminant when that discriminant constrains 
an inherited reference discriminant.

Even though this is redundant 
(because it follows from the rules for 
constraining an inherited discriminant), 
we test it here as it's unlikely that such 
a combination would be tested 
elsewhere.

Check that a generalized reference for a derived type 
whose inherited reference discriminant is constrained refers 
to the constrained value.

Check that the reference_object_name is evaluated by the 
evaluation of a generalized reference.

C-Test. Try a name containing a function 
call. Low priority because it's hard to 
imagine a compiler getting this wrong, 
being the same as evaluating any other 
name that's part of an expression.

Check that Constraint_Error is raised by a generalized 
reference whose discriminant value is null.

The rest of the rule is in the previous 
paragraph.

Check that a generalized reference denotes the object or 
subprogram designated by the value of the reference 
discriminant.

Need a C-Test that tries this for an 
access-to-subprogram discriminant (but 
much less important).

Check that the object denoted by a generalized reference 
can be modified if the discriminant has an access-to-
variable type.

Check that the object denoted by a generalized reference 
cannot be used as a variable if the discriminant has an 
access-to-constant type.

This entire subclause is new in Ada 
2012.

Check that a Constant_Indexing or Variable_Indexing 
aspect can only be specified on a tagged type declaration.

Check that name of a Constant_Indexing aspect cannot 
denote an entity other than a function declared in the same 
declaration list as the type declaration.

B-Test. Should try denoting the wrong 
kind of entity (procedures in particular).



6

4

2 Negative B416001 All

Negative B416001 All

All

All

(3/3) 1 StaticSem Negative B416001 Part 4

6

4

2 Negative B416001 All

Negative B416001 All

3 Negative B416001 All

All

All

(4/3) 1 StaticSem C416A02 All

2 StaticSem Redundant

(5/3) Definitions

Check that the name of a Constant_Indexing aspect can 
denote entities in other scopes so long as at least one 
qualifying function exists in the same declaration list as the 
type declaration.

C-Test. We don't want other visible 
things to cause issues. Test in a child 
package where the parent makes 
conflicting things visible.

Check that the name of a Constant_Indexing aspect can 
denote other kinds of entities in the same declaration list so 
long as at least one qualifying function exists in the same 
declaration list as the type declaration.

C-Test. (Procedures in particular.) Low 
priority as it doesn't seem particularly 
likely to occur in practice.

Check that the name specified by a Constant_Indexing 
aspect cannot denote a function with zero or one 
parameters.

Check that the name specified by a Constant_Indexing 
aspect cannot denote a function whose first parameter has 
a type other than T or T'Class or an access-to-constant 
designating T or T'Class.

B416001, C416A01
Check that the name specified for a Constant_Indexing can 
refer to a set of overloaded functions.

B416001, C416A01
Check that the name specified for a Constant_Indexing can 
have more than two parameters.

Check that name of a Variable_Indexing aspect cannot 
denote an entity other than a function declared in the same 
declaration list as the type declaration.

B-Test. Should try denoting the wrong 
kind of entity (procedures in particular).

Check that the name of a Variable_Indexing aspect can 
denote entities in other scopes so long as at least one 
qualifying function exists in the same declaration list as the 
type declaration.

C-Test. We don't want other visible 
things to cause issues. Test in a child 
package where the parent makes 
conflicting things visible.

Check that the name of a Variable_Indexing aspect can 
denote other kinds of entities in the same declaration list so 
long as at least one qualifying function exists in the same 
declaration list as the type declaration.

C-Test. (Procedures in particular.) Low 
priority as it doesn't seem particularly 
likely to occur in practice.

Check that the name specified by a Variable_Indexing 
aspect cannot denote a function with zero or one 
parameters.

Check that the name specified by a Variable_Indexing 
aspect cannot denote a function whose first parameter has 
a type other than T or T'Class or an access-to-variable 
designating T or T'Class.

Check that the name specified by a Variable_Indexing 
aspect cannot denote a function that returns a type other 
than a reference type for an access-to-variable.

B416001, C416A01
Check that the name specified for a Variable_Indexing can 
refer to a set of overloaded functions.

B416001, C416A01
Check that the name specified for a Variable_Indexing can 
have more than two parameters.

Check that a generalized indexing can be used for an object 
of a derived type that inherits the Constant_Indexing or 
Variable_Indexing aspect from its parent type.

This sentence is deleted by AI12-0104-
1.



(5.1/4) Static-Sem Subpart

(6/5) Legality 1

(7/4) Deleted Removed by AI12-0138-1.

(8/4) Deleted Removed by AI12-0138-1.

(9/5) Legality 1

(10/3) Syntax

(11/3) NameRes 2

(12/3) NameRes Portion This is lead-in text.

(13/3) NameRes 5

B416002 All

5

(14/3) NameRes C416A01 Part 6 C4160RB

B416A01 All

Added by AI12-0138-1. The rules are 
enumerated in 13.1.1(18.2-5/4).

Removed by AI12-0138-1 
(Corrigendum), replaced by AI12-0160-
1 (post-Corrigendum).

Check that an aspect Constant_Indexing or 
Variable_Indexing is illegal if it is specified for a type derived 
from a tagged type with the other attribute specified.

B-Test. Try both attributes, try in both 
visible and private parts; but wait until 
the next document (Amendment?) is 
issued. (We're only interested in cases 
here that don't violate the 
nonoverriddable rules.)

Removed by AI12-0138-1 
(Corrigendum), replaced by AI12-0160-
1 (post-Corrigendum).

Check that an instance is illegal if it contains a derivation of 
a formal tagged type for which aspect Constant_Indexing or 
Variable_Indexing is specified, and the actual type is a 
tagged type with the other attribute specified.

B-Test. Try both attributes, try in both 
the visible and private parts; but wait 
until the next document (Amendment?) 
is issued.

Check that the prefix of a generalized indexing resolves if it 
denotes overloaded functions where one option is a function 
returning an indexable container type and the other function 
is not.

C-Test. Low priority because the other 
overloaded function has to return a type 
that cannot be any kind of prefix (else it 
probably would ambiguous for other 
reasons). It's also not clear that requiring 
this level of resolution is a good idea.

Check that a generalized indexing calls the 
Constant_Indexing function if no Variable_Indexing is 
specified, even in a variable context.

C-Test. To try variable contexts, a 
Constant_Indexing function that returns 
an access-to-variable type is needed; a 
dereference then can be used in a 
variable context. Assume that the object 
being indexed is some sort of handle.

Check that a generalized indexing is illegal in a variable 
context if no Variable_Indexing is specified and 
Constant_Indexing specifies a function returning an ordinary 
object.

Check that a generalized indexing is illegal in a variable 
context if no Variable_Indexing is specified and 
Constant_Indexing specifies a function returning a 
reference type with an access constant discriminant.

B-Test. Not very important (unlikely the 
previous would work and this would fail), 
but could make a version of the existing 
test.

When both Constant_Indexing and Variable_Indexing are 
specified, check that the variable indexing function is called 
in variable contexts if the prefix is a variable, and that the 
constant indexing function is called in all other cases 
(including variable indexing contexts when the prefix is a 
constant).

C-Test. To try variable contexts, a 
Constant_Indexing function that returns 
an access-to-variable type is needed; a 
dereference then can be used in a 
variable context. Assume that the object 
being indexed is some sort of handle. 
(Existing test checks that the right 
routine is called when the prefix is a 
variable.)

When both Constant_Indexing and Variable_Indexing are 
specified, check that a generalized indexing is illegal if it is 
called in variable contexts when the prefix is a constant and 
Constant_Indexing specifies a function returning an ordinary 
object.



5

6

(15/3) NameRes Portion Included in the other test objectives.

(16/3) NameRes Portion Included in the other test objectives.

(17/3) NameRes Subpart

(18/4) NonNormative C416A02 All

C416A02 All

(19/3) NonNormative

(20/3) NonNormative

(21/3) NonNormative

(22/3) NonNormative

4.2 (1) 1 Redundant

2 Definitions Literal

(2/2) Deleted

(3) NameRes 4

3

3

B46002A (type conversion) 2

(4) NameRes C87B27A

B46002A (type conversion) 2

When both Constant_Indexing and Variable_Indexing are 
specified, check that a generalized indexing is illegal if it is 
called in variable contexts when the prefix is a constant and 
Constant_Indexing specifies a function returning a 
reference type with an access constant discriminant.

B-Test. Not very important (unlikely the 
previous would work and this would fail, 
also partially covered by the containers 
tests), but could make a version of the 
existing test.

When only a Variable_Indexing is specified, check that a 
generalized indexing with a prefix of a constant is illegal.

B-Test. (There's no fallover in this case, 
like there is in the others.)

This is necessarily tested in any C-Test 
that uses a generalized indexing.

Added by AI12-0104-1. We test these 
cases here as there is no other natural 
point to do so, and they're important.

Check that if a function used by an inherited 
Constant_Indexing or Variable_Indexing is overridden, the 
overridden function is called by a generalized indexing.

Check that if a function used by an inherited 
Constant_Indexing or Variable_Indexing is overloaded (with 
a different profile), the overloaded function can be called by 
a generalized indexing.

Example; the paragraphs were 
renumbered by AI12-0104-1.

Widely 
Used

Check that the value of a character literal is not used to 
determine its type.

B-Test. Try a call of two overloaded 
procedures taking parameters of 
different character types, only one of 
which has the appropriate literal. This is 
marked as untested in ACATS 2.x.

Check that an overloaded call can be resolved when an 
actual parameter is a character literal and only one of the 
subprograms has a character type parameter.

C-Test. This is marked as untested in 
ACATS 2.x.

Check that a character literal can be used as the actual for 
an appropriate formal function.

C-Test. This is marked as untested in 
ACATS 2.x.

Check that a character literal is illegal in a context that does 
not identify a single type.

B-Test. Try other contexts that require a 
single type (if there are any that allow 
characters).

Check that an overloaded call can be resolved when an 
actual parameter is a string literal and only one of the 
subprograms has a string type parameter.

Check that a string literal is illegal in a context that does not 
identify a single type.

B-Test. Try other contexts that require a 
single type (if there are any that allow 
strings).



(5) Legality Any character literal.

Negative 2

(6) Legality Any string literal.

Negative 4

(7/2) Deleted

(8/2) Definitions Types of literals.

Negative 2

2

2

(9) Dynamic

(10) Dynamic C42007E Also see 4.3.3(26).

3 C-Test.

2 C-Test.

(11) 1 Dynamic C42006A

2

2 Dynamic C420001

B420001 This happens because of 4.9(34).

(12) NonNormative A note.

(13) NonNormative An example.

(14) NonNormative

4.3 (1) Definitions Subpart Aggregate, test the individual types.

(2) Syntax

Widely 
Used

Check that a character literal is illegal if it is not a value of 
the expected type.

B-Test. This is marked as untested in 
ACATS 2.x.

Widely 
Used

Check that a string literal is illegal if any character is not a 
value of the component type of the expected type.

B-Test. This is marked as untested in 
ACATS 2.x. Also see 4.3.3(19).

Widely 
Used

Check that an expression will not resolve if the expected 
type of an integer literal is not an integer type.

B-Test. Try many other kinds of types: 
float, fixed, enumeration, access, record, 
array, task, protected, etc.

Check that an expression will not resolve if the expected 
type of a real literal is not an float or fixed type.

B-Test. Try many other kinds of types: 
integer, enumeration, access, record, 
array, task, protected, etc.

Check that an expression will not resolve if the expected 
type of null is not an access type.

B-Test. Try many other kinds of types: 
integer, float, fixed, enumeration, 
access, record, array, task, protected, 
etc.

Widely 
Used

Nothing will work of the values of 
literals are wrong.

Check that the bounds of non-null string literals are 
determined properly.

Check that if the upper bound of a non-null string literal is 
outside of the appropriate index subtype, Constraint_Error 
is raised.

Check that the bounds of null string literals are determined 
properly when the upper bound is in the index base type.

Check that if any character of a string literal does not belong 
to the dynamic component subtype of the expected type, 
Constraint_Error is raised.

Check that if any character of a static string literal does not 
belong to the static component subtype of the expected 
type, the literal is illegal.

B-Test. This happens because of 
4.9(34).

Check that non-static null string literals whose upper bound 
is not in the index base type raise Constraint_Error.

Check that static null string literals whose upper bound is 
not in the index subtype are illegal.



(3/2) NameRes 2

5

3

B46002A (type conversion) 4

(4) Legality B430001 Check that an aggregate cannot be of a class-wide type.

(5) 1 Dynamic Any aggregate does this.

2 Dynamic

3 Dynamic Any aggregate will test this.

(6) Dynamic 4

4.3.1 (1) Redundant

(2) Syntax

(3) Syntax

(4/2) Syntax

Negative This grammar may be ambiguous. B431001 All

B431002 All

(5) Syntax

(6) 1 Definitions

2 Legality C43106A

B43005A (array 
dimensions), B43005B 
(number of components), 
B43005F (mixed notation), 
B43105C (type of 
expressions), B432221A 
(completeness of array), 
B43221B (length of array), 
B43223A (others choice)

Check that the contents of an aggregate are not used to 
resolve it.

B-Tests. Additional cases (extension 
aggregates must be tagged, null record 
must be record) should be tried here.

Check that limitedness is not used to resolve expressions 
containing aggregates

B-Test. Try a subprogram overloaded on 
limited and nonlimited record types.

Check that an overloaded call can be resolved when an 
actual parameter is an aggregate and only one of the 
subprograms has a record or array parameter.

C-Test. Try record, array, and extension. 
Contrast to private types completed by 
record or arrays (which are not 
considered). Not tested in ACATS 2.x.

Check that an aggregate is illegal in a context that does not 
identify a single type.

B-Test. Try an aggregate as the 
ancestor of an extension aggregate.

Widely 
Used

Not 
Testable

This says that no order can be 
depended upon.

Widely 
Used

Check that an aggregate of a tagged type that does not 
belong to the first subtype of its type raises 
Constraint_Error.

C-Test. A constrained first subtype with 
inherited discriminants is necessary, and 
an ancestor object that is not in that 
subtype.

Check that a positional component association in a record 
aggregate cannot have a <> rather than an expression.

Check that a positional component association in an 
extension aggregate cannot have a <> rather than an 
expression.

Note: These rules also apply to 
extension aggregates, so we test the 
rules for them as well as record aggs.

Widely 
Used

Any aggregate will test one or the 
other.

Check that positional components can precede any named 
components in a record aggregate.



4

Negative B43002K

B431002 All

3 Legality Subpart Other tests will test the others choice.

Negative B43002F, B43002H

B431002 All

(7) NameRes C87B29A

(8/2) NameRes

C431A01 All Check that a record aggregate can have a limited type.

(9) 1 Definitions Subpart

2 NameRes Subpart Tested by any named notation

Negative B43101A

B431004 All

(10) NameRes Portion Lead-in for following bullets

(11) NameRes C87B30A

3

(12) NameRes

Check that positional components can precede any named 
components in an extension aggregate.

C-Test. These rules also apply to 
extension aggregates, so we test them 
for those as well.

Check that named components cannot precede any 
positional components in a record aggregate.

Check that named components cannot precede any 
positional components in an extension aggregate.

Note: These rules also apply to 
extension aggregates, so we test the 
rules for them as well as record aggs.

Check that an others component association cannot appear 
anywhere in a record aggregate other than last.

Note: This also prevents multiple others 
association, since one of them is not 
last.

Check that an others component association cannot appear 
anywhere in an extension aggregate other than last.

Note: These rules also apply to 
extension aggregates, so we test the 
rules for them as well as record aggs.

This is not really a syntax rule, but 
rather a resolution one, because of the 
ambiguity in the syntax.

Check that an expression surrounded by parens is 
interpreted as a parenthesized expression, not a record 
aggregate.

Widely 
Used

This simply determines the type of the 
aggregate for reference to other rules; 
real resolution issues are tested for 
4.3(3/2).

We only test this objective because it is 
a change from Ada 95.

Needed - tested by other aggregate 
tests.

Check that the selector names in a record aggregate can 
only name components and discriminants of the record 
type, and cannot name components of other variants.

Check that the selector names in an extension aggregate 
can only name components and discriminants of the record 
extension, and cannot name components of other variants 
or of the type of the ancestor part..

Note: These rules also apply to 
extension aggregates, so we test the 
rules for them as well as record aggs.

Check that overloaded expressions can be resolved in 
positional associations of a record aggregate because the 
type of the associated component is known.

Check that overloaded expressions can be resolved in 
positional associations of an extension aggregate because 
the type of the associated component is known.

C-Test. These rules also apply to 
extension aggregates, so we test them 
for those as well.

C43105A, C43105B, 
C87B30A

Check that overloaded expressions can be resolved in 
named associations of a record aggregate because the type 
of the associated component is known.



3

(13) NameRes 3 C-Test.

(14) Legality C431001

Negative B431003 All Not tested in ACATS 2.x.

Negative 7

(15/3) Legality B430001, C431001

Negative B430001

B430001

(16/4) 1 Legality Subpart Tested in every legal aggregate.

All

All

Negative B43101A (others) 2

Negative B431004 All

Negative B43101A

Check that overloaded expressions can be resolved in 
named associations of an extension aggregate because the 
type of the associated component is known.

C-Test. These rules also apply to 
extension aggregates, so we test them 
for those as well.

Check that overloaded expressions can be resolved in 
others associations of a record aggregate because the type 
of the associated component is known.

Check that overloaded expressions can be resolved in 
others associations of an extension aggregate because the 
type of the associated component is known.

C-Test. These rules also apply to 
extension aggregates, so we test them 
for those as well.

Check that a record aggregate can be for a record 
extension if it is not descended from any private types.

Check that the type of a record aggregate cannot be for a 
record extension that is descended from any private type or 
private extension.

AI05-0115-1 changed the definition of 
descended from to make it clear 
visibility is involved.

Check that the type of a record aggregate cannot be a 
derived type that has an ancestor for which the current view 
of the parent of the derived type is not a descendant of the 
full view of the ancestor. descendant of the ancestor.

B-Test. Try examples like those given in 
AI05-0115-1.

These objectives use the approved 
correction of AI05-0016.

Check that null record may appear in place of 
component associations if no components are 
needed in a record aggregate.

This isn't the primary objective of these 
tests, but it is tested.

B430001, C432001, 
C432004

Check that null record may appear in place of 
component associations if no components are 
needed in an extension aggregate.

This isn't the primary objective of these 
tests, but it is tested.

Check that null record cannot appear in place of 
component associations if any components are 
needed in a record aggregate.

Check that null record cannot appear in place of 
component associations if any components are 
needed in an extension aggregate.

We test others => <> separately 
because it is new, and because it is 
different than other associations. C431A01, C431002

Check that a component association of others => <> in a 
record aggregate may have any number of associated 
components, including none.

C431A01, C431002

Check that a component association of others => <> in an 
extension aggregate may have any number of associated 
components, including none.

Check that a component association (other than others => 
<>) in a record aggregate is illegal if it does not have an 
associated component.

B-Test: Test too many positional 
components.

Check that a component association (other than others => 
<>) in an extension aggregate is illegal if it does not have 
an associated component.

Note: These rules also apply to 
extension aggregates, so we test the 
rules for them as well as record aggs.

Check that a record aggregate is illegal if it has needed 
components that are not associated with any component 
associations.



Negative B431004 All

Negative

Negative B431004 All

2 Legality Subpart

C431A01 All

C431A01 All

Allowed by AI05-0199-1 7 C-Test.

Allowed by AI05-0199-1 6 C-Test.

Negative B43101A

B431004 All

3 From approved AI12-0046-1. B431005 All

(17/5) Legality Subpart

Negative B431006 All

Negative 3

Check that an extension aggregate is illegal if it has needed 
components that are not associated with any component 
associations.

Note: These rules also apply to 
extension aggregates, so we test the 
rules for them as well as record aggs.

B43101A (two named 
choices, one positional and 
one named)

Check that a record aggregate is illegal if it has a needed 
component that is associated with more than one 
component association.

Check that an extension aggregate is illegal if it has a 
needed component that is associated with more than one 
component association.

Note: These rules also apply to 
extension aggregates, so we test the 
rules for them as well as record aggs.

Test should be checked when the 
number of expression evaluations is 
tested.

We test others => <> and A|B => <> 
separately because they are new, and 
because they are different than other 
associations.

Check that a component association in a record aggregate 
with a <> may have two or more associated components of 
different types.

Check that a component association in an extension 
aggregate with a <> may have two or more associated 
components of different types.

These rules also apply to extension 
aggregates, so we test them for those as 
well.

Check that a component association in a record aggregate 
may have two or more associated components with 
anonymous access types that statically match.

Check that a component association in an extension 
aggregate may have two or more associated components 
with anonymous access types that statically match.

Check that a component association in a record aggregate 
with an expression cannot have two or more associated 
components of different types.

Check that a component association in an extension 
aggregate with an expression cannot have two or more 
associated components of different types.

Note: These rules also apply to 
extension aggregates, so we test the 
rules for them as well as record aggs.

Check that Legality Rules are enforced for all associated 
components, even when the results vary.

Any aggregate for a variant record will 
test.

Modified by AI05-0220-1; the previous 
rule could be circular. Modified again 
by AI12-0086-1.

Check that if a variant part is not nested in an unselected 
variant, the value of the governing discriminant of a variant 
in a record aggregate cannot be non-static.

Note: This objective is wrong, strictly 
speaking, after the post-Corrigendum 
document is issued, but the test is OK 
even when AI12-0086-1 is in effect.

Check that if a variant part is not nested in an unselected 
variant, the value of the governing discriminant of a variant 
in an extension aggregate cannot be non-static unless the 
subtype is static and the subtype covers only one variant 
part.

B-Test. Low priority because mixing 
variants and extensions is rare.



C43103A, C43102B 3

3

Additional objectives from AI12-0086-1. 1

1

1

1

(17.1/2) Legality 6 C-Test.

6

Subpart

Negative 7 B-Test.

Negative 7

(18) Dynamic Defines basic execution.

(19/5) 1 Dynamic

C43004A, C43004C 2

3

2 8

Double 
Negative

Check that if a discriminant does not govern a variant part, 
or the variant part is nested within a variant that is not 
selected, the value in a record aggregate can be non-static. 
Probably should correct the objective to be similar to the 
next one, but that's not a priority.

C-Test: check that the last aggregate in 
the question of AI05-0220-1 is legal 
(already tried in B431006). The other 
case is adequately tested by the existing 
tests.

Double 
Negative

Check that if a discriminant does not govern a variant part, 
or the variant part is nested within a variant that is not 
selected, the value in an extension aggregate can be non-
static.

C-Test. These rules also apply to 
extension aggregates, so we test them 
for those as well.

Check that if a variant part is not nested in an unselected 
variant, the value of the governing discriminant of a variant 
in a record aggregate cannot have a non-static subtype.

B-Test. Part of next (post-corrigendum) 
document; more important when that is 
issued.

Check that if a variant part is not nested in an unselected 
variant, the value of the governing discriminant of a variant 
in an extension aggregate cannot have a non-static 
subtype.

B-Test. Part of next (post-corrigendum) 
document; more important when that is 
issued.

Check that if a variant part is not nested in an unselected 
variant, the value of the governing discriminant of a variant 
in a record aggregate cannot have values that cover more 
than one variant.

B-Test. Part of next (post-corrigendum) 
document; more important when that is 
issued.

Check that if a variant part is not nested in an unselected 
variant, the value of the governing discriminant of a variant 
in an extension aggregate cannot have values that cover 
more than one variant.

B-Test. Part of next (post-corrigendum) 
document; more important when that is 
issued.

Check that the association in a record aggregate for a 
discriminant with a default can be given by <>.

Check that the association in an extension aggregate for a 
discriminant with a default can be given by <>.

C-Test. These rules also apply to 
extension aggregates, so we test them 
for those as well.

Discriminant associations with 
expressions are tested by many legal 
aggregates.

Check the association in a record aggregate for a 
discriminant without a default cannot be given by <>.

Check the association in an extension aggregate for a 
discriminant without a default cannot be given by <>.

B-Test. These rules also apply to 
extension aggregates, so we test them 
for those as well.

Not 
Testable

Widely 
used

Basic execution is tested by any record 
aggregate.

Check that each expression of a record aggregate is 
converted to the appropriate subtype and appropriate 
checks are made.

C-Test. Try array conversions (length 
checks).

Check that each expression of an extension aggregate is 
converted to the appropriate subtype and appropriate 
checks are made.

C-Test. These rules also apply to 
extension aggregates, so we test them 
for those as well.

Check that per-object constraints are elaborated in a record 
aggregate, and that happens before the associated 
expression is evaluated and after the value of the 
discriminant is evaluated.

C-Test. Be sure to check cases where 
the per-object constraint raises an 
exception. Marked as not tested in 
ACATS 2.x.



7

3 1

1

(19.1/2) 1 Dynamic Any record aggregate.

2 Dynamic C431A02 All

C431A02 All

C431A02 All

C431A02 All

C431A01, C431A03 All

C431A01, C431A03 All

(20) Dynamic C43107A

4

(21) NonNormative A note.

Check that per-object constraints are elaborated in an 
extension aggregate, and that happens before the 
associated expression is evaluated and after the value of 
the discriminant is evaluated.

C-Test. These rules also apply to 
extension aggregates, so we test them 
for those as well.

Newly added by AI12-0061-1, after 
Corrigendum 1.

If the value of a discriminant that governs a variant part of a 
record aggregate is given by a nonstatic expression with a 
static nominal subtype and has a static predicate, and the 
static predicate is disabled, then Constraint_Error is raised if 
the value of the discriminant does not satisfy the predicate.

C-Test. Test only after the next 
document (Amendment or Revision) is 
issued; raise the priority at that time.

Other than the case of static 
predicates, this should only happen for 
invalid values, which we can't generate 
on demand, so other cases aren't 
testable.

If the value of a discriminant that governs a variant part of 
an extension aggregate is given by a nonstatic expression 
with a static nominal subtype and has a static predicate, 
and the static predicate is disabled, then Constraint_Error is 
raised if the value of the discriminant does not satisfy the 
predicate.

C-Test. Test only after the next 
document (Amendment or Revision) is 
issued; raise the priority at that time.

Widely 
used

Check that for each association with a <> in a record 
aggregate, if the associated component has a default 
expression, that expression is used and not the default 
initialization of the type of the component.

Check that for each association with a <> in an extension 
aggregate, if the associated component has a default 
expression, that expression is used and not the default 
initialization of the type of the component.

These rules also apply to extension 
aggregates, so we test them for those as 
well.

Check that for each association with a <> in a record 
aggregate, if the associated component does not have a 
default expression, the component is initialized by default.

Check that for each association with a <> in an extension 
aggregate, if the associated component does not have a 
default expression, the component is initialized by default.

These rules also apply to extension 
aggregates, so we test them for those as 
well.

Check that if a <> in a record aggregate has multiple 
associated components, each one is appropriately initialized 
(either from the default expression or the initialized by 
default). In particular, check that if these components have 
the same type and default expression, the expression is 
evaluated for each one.

Check that if a <> in an extension aggregate has multiple 
associated components, each one is appropriately initialized 
(either from the default expression or the initialized by 
default). In particular, check that if these components have 
the same type and default expression, the expression is 
evaluated for each one.

These rules also apply to extension 
aggregates, so we test them for those as 
well.

Check that each expression in a record aggregate is 
evaluated once for each associated component when there 
are multiple associated components.

Check that each expression in an extension aggregate is 
evaluated once for each associated component when there 
are multiple associated components.

C-Test. These rules also apply to 
extension aggregates, so we test them 
for those as well.



(22) NonNormative Start of examples...

(23) NonNormative

(24) NonNormative

(25) NonNormative

(26) NonNormative

(27/2) NonNormative

(28) NonNormative

(29) NonNormative

(29.1/2) NonNormative

(29/2/2) NonNormative

(30) NonNormative

(31) NonNormative ...end of examples.

4.3.2 (1) Redundant

(2) Syntax

(3) Syntax

(4/2) 1 Legality Resolution tested under 4.3(3/2).

Negative B432001 All Not tested in ACATS 2.x.

2 NameRes Subpart Any ancestor part expression will test.

C432005 All

Negative B432001 All Not tested in ACATS 2.x.

(5/3) 1 Legality Subpart Any ancestor part subtype will test.

These are the odd cases.

7

C432005 All

Negative B432001 All

2 Legality Subpart Any ancestor part expression will test.

Negative B432001 All New rule in the Amendment.

3 Legality C432001, C432004

Negative B432001 All Same as the first objective for this line.

This rule is not a Name Resolution rule; 
that's in 4.3(3/2).

Check that an extension aggregate cannot be of a tagged 
record type or of a private extension.

Check that the ancestor expression type in an extension 
aggregate can be limited.

Check that the type of an extension aggregate is not used 
to resolve an ancestor part expression.

C432001 (private and 
private extension), 
C432004 (abstract)

Check that the subtype of an ancestor part of an extension 
aggregate can be a private type, a private extension, or an 
abstract type.

Check that the ancestor subtype mark in an extension 
aggregate can be an interface type.

C-Test. This is a new capability in Ada 
2005.

Check that the ancestor subtype mark in an extension 
aggregate can be limited.

Check that the subtype of an ancestor part of an extension 
aggregate cannot be a classwide subtype, nor an untagged 
type.

Check that the expression of an ancestor part cannot be 
dynamically tagged.

This rule was substantially modified by 
AI05-0115-1.

Check that the type of an extension aggregate is a 
descendant of from the type of the ancestor, through one or 
more record extensions.

The only change was to replace "derived 
from" to "a descendant of". That 
changes the wording of the objective, 
but only makes a difference in obscure 
visibility cases (we have a separate 
objective for them).

Check that the type of an extension aggregate cannot be 
unrelated from the type of the ancestor part.



B432001 All Same as the first objective for this line.

B432001 All Same as the first objective for this line.

7

4 Legality Added by AI05-0115-1. 7

(5.1/3) Legality Portion

(5.2/3) Legality 6

7

Negative 8 B-Test.

(5.3/3) Legality

Negative 6 B-Test. (Combine with the previous?)

(5.4/3) Legality 5 C-Test.

5 C-Test.

Negative 7

Check that the type of the ancestor part cannot be the same 
as or descended from the type of the extension aggregate.

Check that the type of an extension aggregate cannot be 
descended from the type of the ancestor through any 
private extensions.

Check that the type of an extension aggregate cannot be a 
type such that the current view of the parent of the 
aggregate type is not a descendant of the full view of the 
ancestor type. descendant of the ancestor.

B-Test. Try examples like those given in 
AI05-0115-1.

Check that the subtype_mark of an extension aggregate 
cannot denote a view of a type that has unknown 
discriminants.

B-Test. Try both private types with 
unknown discriminants, and generic 
formal types with unknown 
discriminants.

Added by AI05-0067-1 and AI05-0244-
1. This is the lead-in.

Added by AI05-0067-1 and AI05-0244-
1.

Check that the ancestor_part of a limited extension 
aggregate can be a function call (even if the function has an 
unconstrained nominal subtype) if the extension part has no 
needed components.

C-Test. Try parenthesizing and 
qualifying the function call.

Check that the ancestor_part of a limited extension 
aggregate can be an object that has an unconstrained 
nominal subtype, even if the extension part has 
components.

C-Test. Try parameters, class-wide 
objects, and array objects. Try 
parenthesizing and qualifying the 
objects.

Check that the ancestor_part of a limited extension 
aggregate cannot be a function call of a function with an 
unconstrained result subtype unless the aggregate has no 
needed extension components.

Added by AI05-0067-1 and AI05-0244-
1.

We suggest testing these 
cases as part of the 
previous (positive) 
objectives; they have little 
value on their own.

Check that the ancestor_part of a limited extension 
aggregate cannot be a parenthesized or qualified function 
call of a function with an unconstrained result subtype 
unless the aggregate has no needed extension 
components.

Added by AI05-0067-1 and AI05-0244-
1.

Check that the ancestor_part of a limited extension 
aggregate can be a conditional expression that has a 
dependent expression that has an unconstrained nominal 
subtype if the extension part has no needed components.

Check that the ancestor_part of a limited extension 
aggregate can be a conditional expression where one or 
more dependent expressions are objects that have an 
unconstrained nominal subtype, even if the extension part 
has components.

Check that the ancestor_part of a limited extension 
aggregate cannot be a conditional expression that has a 
dependent expression that is a function call of a function 
with an unconstrained result subtype unless the aggregate 
has no needed extension components.

C-Test. Try parenthesizing and 
qualifying the conditional expression and 
the dependent expression.



(6) StaticSem Subpart

6 C-Test. (?)

Negative 6 B-Test.

Negative C432002 (not given). 4 B-Test (try to give them).

(7) Dynamic C432003, C432004

C432001

(8/3) Dynamic C432002, C432003 This is the Ada 95 objective.

5

(9) NonNormative A note.

(10) NonNormative Another note.

(11) NonNormative Start of examples...

(12) NonNormative

(13) NonNormative ...end of examples.

4.3.3 (1) 1 Redundant

2-3 Definitions

(2) Syntax

(3/2) Syntax

(4) Syntax

(5/5) Syntax Changed by AI12-0061-1.

Negative B43201A

B433001 All

Any extension aggregate will test 
normal cases.

Check that inherited discriminants are needed by an 
extension aggregate if the ancestor subtype mark denotes 
an unconstrained subtype.

Check that values cannot be given for components included 
in the ancestor expression or subtype of an extension 
aggregate.

Check that inherited discriminants are not needed by an 
extension aggregate if the ancestor part is an expression or 
constrained subtype.

Extra and missing needed components 
are tested in 4.3.1(16/2).

Check that the components associated with an ancestor 
part subtype mark in an extension aggregate are initialized 
by default.

Check that the components associated with an ancestor 
part expression in an extension are initialized by the 
expression.

Order of discriminant evaluation tested 
in 4.3.1(19).

This check was broadened by AI05-
0282-1.

If the type of the ancestor part has discriminants that are not 
inherited by the type of an extension aggregate, then check 
that the values of the discriminants are checked and 
constraint_error raised if needed.

If the type of the ancestor part has discriminants and the 
ancestor_part is not an unconstrained subtype name, then 
check that the values of the discriminants are checks and 
Constraint_Error is raised if needed.

C-Test. Test cases not covered in the 
existing tests: discriminants that come 
from a constrained ancestor. See the 
example in the AI05-0282-1. Be sure to 
test the inconsistency mentioned in 
4.3.2(13.d/3).

Positional and named array 
aggregates.

Since the syntax of array and record 
aggregates has to be shared, this is 
likely to be a check outside of the 
syntax.

Check that an array aggregate cannot have mixed 
positional and named notation (excepting others).

Check that <> is not allowed in positional array aggregates 
other than in an others choice.



(5.1/5) Syntax

(6) Definitions

(6.1/5) Definitions

(7/2) 1 NameRes

2 NameRes C87B31A (one-dim) 2 C-Test: check multi-dimensional arrays.

Negative B43201D

All

(8) C87B31A (one-dim) 2 C-Test: check multi-dimensional arrays.

Negative B43201D

(9) Legality Subpart

Negative 3

(10) Legality Portion Lead-in for following bullets

Negative

(11/4) Legality C43204A, C433001 2 C-Test. Try entry calls and others => <>.

C43204C

C433005 All

C433006 All

Added by AI12-0061-1, post 
Corrigendum 1.

How n-dimensional array aggregates 
work.

Added by AI12-0061-1, post 
Corrigendum 1. “Index Parameter”.

Widely 
Used

This simply determines the type of the 
aggregate for reference to other rules; 
real resolution issues are tested for 
4.3(3/2).

Check that array component expressions in an array 
aggregate can be resolved because they must have the 
component type of the array type of the aggregate.

Check that array component expressions in an array 
aggregate must have have the component type of the array 
type of the aggregate.

C433A01 (one-dim), 
C433A02 (two-dim)

Check that the array component expressions in an array 
aggregate may have a limited type.

Check that the choices in a named array aggregate can be 
resolved because they must have the corresponding index 
type of the array type of the aggregate.

Check that the choices in a named array aggregate must 
have the corresponding index type of the array type of the 
aggregate.

All M-dimensional array aggregates will 
test.

Check that an n-dimensional array aggregate cannot be 
written as if it has some other dimensionality.

B-Test. Try writing 2-dim arrays as 1-dim 
positional aggs.

B43202C (operators, 
membership)

Check that an others choice in an array aggregate is not 
allowed in contexts not described by 4.3.3(11-15).

Are there any other such contexts?? I 
can't think of any, if there are any I've 
missed they should be tested.

The positive objectives really belong to 
4.3.3(25), but here we can spread them 
out more clearly.

Check that the constraint of the constrained array subtype 
of an explicit actual parameter of a subprogram or entry call 
is used to determine the bounds of an array aggregate with 
an others choice. 

Check that the constraint of the constrained array subtype 
of an explicit actual parameter of an instantiation is used to 
determine the bounds of an array aggregate with an others 
choice. 

Check that the constraint of the constrained array subtype 
of a function return is used to determine the bounds of an 
array aggregate with an others choice in the expression 
of a return statement. 

Added by AI12-0157-1 (although 
always assumed).

Check that the constraint of the constrained array subtype 
of a function return is used to determine the bounds of an 
array aggregate with an others choice in the return 
expression of an expression function. 



C43204E, C433001

C43204E

Negative B43202A

Negative B43202A

Negative All

Negative B433003 All

Negative B43202A 3

Negative 3 B-Test. Try others => <>.

Negative B43202A

(12) Legality C43204I, C433001

Negative

(13) Legality C433001

Negative B43202A

Check that the constraint of the constrained array subtype 
of an object declaration (including constants) is used to 
determine the bounds of an array aggregate with an others 
choice in the initializing expression of the object.

Check that the constraint of the constrained array subtype 
of a component declaration is used to determine the bounds 
of an array aggregate with an others choice in the 
default expression of the component.

C43204F (subprogram), 
C43204G (entry), C43204H 
(generic unit)

Check that the constraint of the constrained array subtype 
of a formal parameter is used to determine the bounds of an 
array aggregate with an others choice in the default 
expression of the parameter.

Check that an others choice is not allowed in an array 
aggregate that is an explicit actual parameter of a 
subprogram or entry call if its subtype is unconstrained. 

Check that an others choice is not allowed in an array 
aggregate that is an explicit actual parameter of an 
instantiation if its subtype is unconstrained. 

B43202A (simple return, 
others with value), 
B433003

Check that an others choice is not allowed in an array 
aggregate in the expression of a return statement if the 
subtype of the function return is unconstrained. 

Added by AI12-0157-1 (although 
always assumed).

Check that an others choice is not allowed in an array 
aggregate in the return expression of an expression 
function if the subtype of the function return is 
unconstrained. 

Check that an others choice is not allowed in an array 
aggregate in the initializing expression of an object 
declaration if the subtype of the object is unconstrained. 

B-Test. Try a variable declaration and 
others => <>.

Check that an others choice is not allowed in an array 
aggregate in the default expression of a component 
declaration if the subtype of the component is 
unconstrained. 

Check that an others choice is not allowed in an array 
aggregate in the default expression of a formal parameter if 
the subtype of the parameter is unconstrained. 

The positive objectives really belong to 
4.3.3(25), but here we can spread them 
out more clearly.

Check that the constraint of the target array object of an 
assignment statement is used to determine the bounds of 
an array aggregate with an others choice in the source 
expression.

This is impossible, as an array object 
must be constrained.

The positive objectives really belong to 
4.3.3(25), but here we can spread them 
out more clearly.

Check that the constraint of the array subtype of a qualified 
expression is used to determine the bounds of an array 
aggregate with an others choice in the qualified 
expression.

Check that an others choice is not allowed in an array 
aggregate in the expression of a qualified expression if the 
subtype_mark in the qualified expression is unconstrained. 



(14) Legality 1

Negative

(15/3) Legality A punctuation change by AI05-0147-1. Part 3

Negative Part 3

(15.1/3) Legality Added by AI05-0147-1 (Ada 2012) 6

Negative 5

(16) 1 Definitions Constraint that applies.

2 Legality Negative 6

6

(17/5) Legality 2

Negative 5

1

(18/3) Legality

Negative B43201C

New cases added by AI05-0262-1. All

Check that the constraint of the component array subtype of 
an aggregate component is used to determine the bounds 
of an array aggregate with an others choice which is 
used as a component expression in a larger 
aggregate.

C-Test. This is not usefully testable, as it 
is not possible to find the bounds used 
for the component separate from the 
array object it is nested in.

This is impossible, as components 
have to be definite.

C433006 (expression 
functions)

Check that the constraint of the applicable index constraint 
of a parenthesized expression is used to determine the 
bounds of a parenthesized array aggregate with an others 
choice.

C-Test. Check parenthesized 
expressions in all of the other contexts 
noted under 4.3.3(11-14, 15.1).

B430003 (return 
statements, expression 
functions)

Check that an others choice in a parenthesized array 
aggregate is not allowed in contexts where the appropriate 
subtype (as described by 4.3.3(11-15)) is unconstrained.

B-Test. Check parenthesized 
expressions in all of the other contexts.

Check that the constraint of the applicable index constraint 
of a conditional_expression is used to determine the 
bounds of a dependent array aggregate with an others 
choice.

C-Test. Check conditional_expressions 
in all of the other contexts noted under 
4.3.3(11-14). Make sure to try both if 
and case expressions.

Check that an others choice in an array aggregate is not 
allowed in contexts where the appropriate subtype (as 
described by 4.3.3(11-15.1)) is unconstrained.

B-Test. Check conditional expressions in 
all of the other contexts noted under 
4.3.3(11-14). Make sure to try both if 
and case expressions.

Check that an others choice is not allowed in an array 
aggregate that is an explicit actual parameter of a 
subprogram call to a generic formal subprogram even if its 
subtype is constrained. 

B-Test. This was a fix for a contract 
model violation in Ada 83, and it should 
be tested.

Check that an others choice is not allowed in an array 
aggregate in the default expression of a formal parameter of 
a generic formal subprogram even if the subtype of the 
parameter is constrained. 

B-Test. This was a fix for a contract 
model violation in Ada 83, and it should 
be tested.

AI05-0153-1 modifies the syntax terms 
used here, but the effect is unchanged. 
AI12-0061-1 adds a parenthetical 
remark.

C43207D (range), 
C43208A (range), 
C43208B (range), 
C43224A (range attribute)

Check that a single nonstatic choice is allowed in an array 
aggregate.

C-Test. Check that the single choice can 
be an expression, and after the next 
document (Amendment or Revision) is 
issued, also check that the choice can 
be an iterated_component_association.

Check if an array aggregate contains more than one choice 
or component association, it is illegal for any (other than a 
others choice) of them to be nonstatic.

B-Test. This is marked as untested in 
ACATS 2.x.

Check if an array aggregate contains more than component 
association, including one iterated_component_association, 
it is illegal for any (other than a others choice) of them to 
be nonstatic.

B-Test. Test after the next document 
(Amendment or Revision) is issued.

Widely 
Used

Any named notation array aggregate 
will test this.

Check that a named array aggregate cannot contain two 
choices that cover the same value.

B43201C, B433002
Check that a named array aggregate is illegal if it does not 
cover a contiguous set of index values.



(19) Legality C43209A

2

4

(20) StaticSem

B43209B

(20.1/5) StaticSem 1

(21) Dynamic Portion Lead-in for following bullets

(22) Dynamic

(23) Dynamic

C43004A 2

(23.1/4) 1 Dynamic Any array aggregate

2 All

C433A03 All

Part added by AI12-0084-1. C433004 All

Check that a bottom level subaggregate of an array 
aggregate can be a string literal.

Check that a string literal cannot be used as the bottom 
level subaggregate of an array aggregate if the component 
type is not a character type.

B-Test. Hard to imagine an 
implementation getting this wrong.

Check that a string literal used as the bottom level 
subaggregate of an array aggregate is illegal if any 
character is not a value of the component type of the 
aggregate.

B-Test. This is marked as untested in 
ACATS 2.x. (So is 4.2(7)).

Check that a string literal used as a bottom level 
subaggregate of an array aggregate cannot be enclosed in 
parentheses.

Added by AI12-0061-1, post 
Corrigendum 1.

Check that the nominal subtype for an index parameter in 
an array aggregate is correct.

B-Test. Test as the selecting expression 
of a case expression (coverage should 
be correct). Test after the next document 
(Amendment or Revision) is issued.

Not 
Testable

Arbitrary order is untestable. The 
conversion could fail, but any case that 
did would also fail 4.3.3(28), so those 
tests dominate.

Widely 
Used

Arbitrary order is untestable. Normal 
evaluation is tested by every array 
aggregate.

Check that Constraint_Error is raised if a component 
expression fails the conversion to the component subtype of 
an array aggregate.

C-Test. Try composite types 
(discriminant checks, array length 
checks).

C43207D (2-dim range), 
C43208A (1-dim range), 
C43208B (2-dim range), 
C43210A (1-dim & 2-dim, 
named & others)

Check that a component expression in an array aggregate 
with multiple associated components is evaluated once for 
each associated component.

Widely 
Used

C433A01 (task, PO, lim-
rec for 1-dim); C433A02 
(task, PO, lim-rec for 2-
dim); C433A04 (non-lim 
cases); C433003 (scalar 
types with 
Default_Value)

Check that for each association with a <> in an array 
aggregate, the component is initialized by default.

Check that for a <> in an array aggregate with multiple 
associated components, each associated component is 
default initialized individually.

Check that for each association with a <> in an array 
aggregate whose type has a Default_Component_Value, 
the component is initialized to the 
Default_Component_Value.



(23.2/5) Dynamic 1

(24) Dynamic Portion Lead-in for following bullets.

(25) Dynamic Tested under 4.3.3(11-15).

(26) Dynamic 3

2

2

4

3 C-Test.

3

1

3 C-Test.

3 C-Test.

Added by AI12-0061-1, post 
Corrigendum 1.

Check that the index parameter of an array aggregate takes 
on the value of each index of the covered array 
components.

C-Test. Test after the next document 
(Amendment or Revision) is issued; high 
priority then. Be careful that the order 
doesn't matter. Try nonstatic cases and 
non-contiguous cases.

C43205A (subprogram, 
unconstrained), C43205G 
(subprogram, constrained), 
C43214B (subprogram, 
constrained, string literal)

Check that the constraint (or lack of one) the array subtype 
of an explicit actual parameter of a subprogram or entry call 
is used to determine the lower bound of a positional array 
aggregate or string literal. 

C-Test. Try entry calls and string literals 
in unconstrained contexts.

C43205B (unconstrained), 
C43205H (constrained), 
C43214C (constrained, 
string literal)

Check that the constraint (or lack of one) of the array 
subtype of an explicit actual parameter of an instantiation is 
used to determine the lower bound of a positional array 
aggregate or string literal. 

C-Test. Try string literals in 
unconstrained contexts.

C43205C (unconstrained), 
C43205I (constrained), 
C43214D (constrained, 
string literal)

Check that the constraint (or lack of one) of the array 
subtype of a function return is used to determine the lower 
bound of a positional array aggregate the expression of a 
return statement or string literal. 

C-Test. Try string literals in 
unconstrained contexts.

C43205D (constant, 
unconstrained), C43205J 
(objects, constrained), 
C43214E (objects, 
constrained, string literal)

Check that the constraint (or lack of one) of the array 
subtype of an object declaration (including constants) is 
used to determine the lower bound of a positional array 
aggregate or string literal in the initializing expression of the 
object.

C-Test. Try an unconstrained variable, 
and string literals in any unconstrained 
contexts.

Check that the constraint (or lack of one) of the array 
subtype of a component declaration is used to determine 
the lower bound of a positional array aggregate or string 
literal in the default expression of the component.

C43205J (subprogram, 
generic; constrained)

Check that the constraint (or lack of one) of the array 
subtype of a formal parameter is used to determine the 
lower bound of a positional array aggregate or string literal 
in the default expression of the parameter.

C-Test. Try entry declarations, 
unconstrained contexts, string literals.

Check that the constraint of the target array object of an 
assignment statement is used to determine the lower bound 
of a positional array aggregate or string literal in the source 
expression.

C-Test. Not usefully testable because 
the bounds slide on the assignment.

Check that the constraint (or lack of one) of the array 
subtype of a qualified expression is used to determine the 
lower bound of a positional array aggregate or string literal 
in the qualified expression.

C43205K, C43214F (string 
literal), C460010

Check that the constraint of the component array subtype of 
an aggregate component is used to determine the lower 
bounds of a positional array aggregate or string literal which 
is used as a component expression in a larger aggregate.

Check that the constraint of the applicable index constraint 
of a parenthesized expression is used to determine the 
lower bound of a parenthesized positional array aggregate 
or string literal.



3 C-Test.

2 C-Test. Try aggregates.

(27) Dynamic C43206A (null). 3 C-Test. Try non-null aggregates.

(28) Dynamic C43215A, C43215B

3 C-Test. Try single choices.

(29/3) Dynamic C433001

Approved AI05-0037 mandates this. C433002 All

(30) Dynamic C43212A, C43212C

(31) Dynamic Portion

(32/2) NonNormative A note.

(33/5) NonNormative

(34) NonNormative Start of examples...

(35) NonNormative

(36) NonNormative

(37) NonNormative

(38) NonNormative

(39) NonNormative

(40) NonNormative

(41) NonNormative

(42) NonNormative

(43) NonNormative

(44) NonNormative

(45/5) NonNormative A new example added by AI12-0061-1.

(46/2) NonNormative

(47/5) NonNormative

4.4 (1/3) General Modified by AI05-0147-1.

(2) Syntax

Check that the lower bound of a positional array aggrgeate 
or string literal in a membership is always that of the index 
subtype, even if the subtype is constrained.

C42007E (string literal), 
C43205E (string literal)

Check that the lower bound of a positional array aggrgeate 
or string literal used as the operand of a predefined 
operator is always that of the index subtype.

Check that the bounds of a named array aggregate without 
others are determined by the choices.

Check that Constraint_Error is raised if the upper bound of 
a positional array aggregate without an others choice would 
be outside of the index subtype.

C43207B (ranges), 
C43211A (ranges), 
C43214A (ranges)

Check that Constraint_Error is raised if any non-null choice 
of a named array aggregate is outside of the index subtype.

Check that Constraint_Error is raised if any choice of an 
aggregate with an others clause specifies a component 
outside of the bounds of the aggregate. 

Check that Constraint_Error is raised if any <> choice of an 
aggregate with an others clause specifies a component 
outside of the bounds of the aggregate. 

Check that all subaggregates of a multidimensional array 
aggregate that correspond to the same index have the 
same bounds.

Defines the exception to raise for the 
previous rules.

Another note, added by AI12-0061-1. 
All of the following numbers were 
changed.

End of examples. Corrected by AI12-
0178-1.



(2.1/3) Syntax

(2.2/3) Syntax Added by AI05-0158-1.

(3/4) Syntax

(3.1/3) Syntax Added by AI05-0158-1.

(3.2/4) Syntax

(4) Syntax

(5) Syntax

(6) Syntax

(7/3) Syntax

1 Check that the precedence of operators is correct.

(8) NameRes 3

Negative 1

(9) Definitions

(10) Dynamic

(11) Impl-Def

(12) NonNormative Start of examples...

(13) NonNormative

(14) NonNormative

(15/2) NonNormative ...end of examples.

Added by AI05-0158-1. Note that the 
important effects of these changes are 
tested in 3.8 (for choices) and 4.5.2 (for 
memberships)

Added by AI05-0158-1 and AI12-0022-
1; corrected by AI12-0039-1.

Added by AI05-0158-1; corrected by 
AI12-0039-1.

These syntax changes are considered 
an Amendment (AI05-0003-1, AI05-
0147-1, AI05-0176-1).

We test precedence separately, 
because it is possible for the syntax to 
be flattened.

C44003D (float), C44003F 
(enum), C44003G 
(Boolean)

C-Test. Try integer, modular, and 
ordinary and decimal fixed point types. 
But not likely to be wrong.

Check that a primary can be resolved because it must 
denote an object or value.

C-Test. Try a function overloaded with a 
procedure; use in an expression must 
resolve to the function call (even without 
parameters).

B44001B (procedure), 
B44002B (tasks, entries), 
B44002C (exception)

Check that names that do not denote an object or value are 
not permitted as primaries.

B-Test. Try type and subtype names, 
package names, single protected object 
names, block and loop names. But not 
likely to be wrong.

Widely 
Used

Any object name used in an expression 
tests this.

Not 
Testable

Either something happens, or it 
doesn't. Can't test that.



Paragraphs: Objectives with tests: Total objectives:

10 222 169 150 279 1

Must be tested Objectives with Priority 10 0

Objectives with Priority 9 0

Important to test Objectives with Priority 8 5

Objectives with Priority 7 12

Valuable to test Objectives with Priority 6 20

Objectives with Priority 5 14

Ought to be tested Objectives with Priority 4 27

Objectives with Priority 3 31

Worth testing Objectives with Priority 2 25

Not worth testing Objectives with Priority 1 16

Total: 150

83

Completely: 75

Objectives 
to test:

Objectives with 
submitted tests:

Objectives covered by new 
tests since ACATS 2.6


	Objectives

