
Coverage for ISO/IEC 8652:2012 and subsequent corrections in ACATS 3.x and 4.x
Section 10

Objective's Submitted tests

Clause Para. Lines Kind Subkind Notes Tests New Priority Objective Text Objective notes (will need work).

10

(1) Redundant

(2) Redundant

(3) General

10.1

(1) Definitions

(2) 1-2 Redundant

3 Impl-Def

(3) Definitions Subsystem.

(4) Impl-Def

10.1.1

(1) 1-2 Redundant

3 Definitions Child unit.

4 Definitions Root unit.

(2) Syntax

(3) Syntax

(4) Syntax Negative BA11013 All

(5) Syntax

(6) Syntax

(7) Syntax

(8) Syntax

(8.1/2) Legality 4 B-Test.

(9) Definitions Library unit

(10) Definitions Parents and roots.

A Key to Kinds and subkinds is found on the sheet named Key. Tests new to ACATS 3.0 are shown in bold; ACATS 3.1 in bold italic; ACATS 4.0 in blue bold; ACATS 4.1 in blue bold italic. ACATS 4.2 in green bold italic.

Widely
Used

Program unit (This is marked
redundant, but the definition does not
exist elsewhere.)

Widely
Used

This means that multiple units in a file
should be avoided when possible.

Widely
Used

Widely
Used

Check that private cannot be given on a library unit
body.

This should be tested, because private
starts both private with clauses and
private library units, meaning that a
grammar with single token
lookahead cannot tell between
them; an explicit check may be
needed.

Check that an overriding indicator is not allowed on a library
unit (subprogram, instantiation, or renaming).

Widely
Used

Widely
Used

(11) 1 Redundant Visibility

Visibility BA11005

2 Definitions Subpart Ancestors

3 Redundant

4 Definitions Subpart Descendant

(12) Definitions Subpart Private and public.

Visibility BA11001, BA11002

Visibility CA11010, CA11011

Visibility CA11006, CA11007

(12.1/2) 1 Definitions Subpart Limited view

2 Definitions Negative BA11014 All B-Test.

(12.2/3) Definitions Modified by AI05-0129-1. BA11014 Part 4

(12.3/3) Definitions BA11014 Part 3

7

(12.4/2) Definitions BA12012 All

(12.5/2) 1 Redundant

2 Definitions No known way to test this.

3 Definitions CA11023 All Check that the context clause of a limited view is empty.

(12.6/2) Definitions CA11023 Part 5

This should be tested in 8.1(9), but it
has more to do with child units than
with general visibility.

CA11002 (public child),
CA11003 (grandchild),
CA11004 (private part of
child), CA11005 (private
part of grandchild),
CA11008 (private child),
CA11009 (private
grandchild), CA11015
(generic child), CA11016
(private generic child)

Check that the visible declarations of the parent package are
visible in all parts of child units.

Check that a parent body cannot declare a homograph of a
child mentioned in a context clause.

This should be tested for 8.2(4), but
these rules were tested here in ACATS
2.x, and we aren't going to move them.

Check that in the formal part and visible part of a public child,
the private declarations of the parent package are not visible.

Check that the private declarations of the parent package are
visible in all parts of a private child.

Check that the private declarations of the parent package are
visible in the private part and body of a public child.

All limited with tests will use a limited
view.

Anything not in the next two
paragraphs.

Check that entities other than types and nested packages are
not present in the limited view.

Check that nested packages are present in the limited view of
a package.

C-Test (it's most likely that none of the
other tests will try types declared in a
nested package). But the priority is fairly
low, since it is hard to imagine how this
could go wrong.

Modified by AI05-0108-1 and AI05-
0129-1.

Check that all non-incomplete types are present in the limited
view of a package, and all types are incomplete, and that
tagged types are tagged incomplete.

It would be nice to have a C-Test to
check this, but it is not particularly
important, as other C-Tests will provide
executable examples of some of the
cases, and the B-Test covers all of the
combinations.

Check that types present in a limited view do not have a
discriminant part, even if the full type does have such a part.

B-Test. Try access discriminants
completed with null, and numeric
discriminants completed with literals.

Check that the limited view of a private package is also
private.

The only way to test this is via with
clauses, and that is done by the listed
test.

Not
Testable

Check that types imported from a limited view appear
complete when the library package is visible.

C-Test: Test subunits that inherit full
with clauses. Test limited withs inherited
from parents.

(13) Legality Every child unit tests this.

Negative BA11003

(14) 1 Legality Every child unit tests this.

Negative 3

2 Legality Every child body tests this.

Negative 1

3 Legality Every library rename tests this.

Negative

(15) Legality Every child unit tests this.

Negative BA12007 Check that the parent_unit_name cannot be a renamed unit.

(16) Legality Check that a child of an instance can be an instance.

2 Check that a child of an instance can be a renaming. C-Test.

Negative BA11003, BA11008

(17) 1 Legality Check that a child of a generic unit can be a generic unit.

2 C-Test.

Negative BA11003

2 Deleted

(18) Legality 2

4

Negative

Negative BA11008

(19/2) 1-2 Legality

Widely
Used

Check that a child library unit may not have anything other
than a library package or generic library package as its parent
unit.

Widely
Used

Check that nested program units cannot have
parent_unit_names.

B-Test. An Ada 95 rule, claims to be
tested, but no test was found..

Widely
Used

Check that the body of a nested unit cannot be a library unit;
check that the body of a child unit cannot be a nested unit.

B-Test. An Ada 95 rule, but no test
found. Seems unlikely to get wrong,
however.

Widely
Used

BA11010, BA11011,
BA11012

Check that library level renaming cannot rename anything that
is not a library_item.

Widely
Used

CA11012, CA11013,
CA11014

Check that a child of an instance is cannot be anything other
than an instance or a renaming.

CA11012, CA11013,
CA11014

Check that a child of a generic unit can be a renaming of
some other child of the generic unit.

Check that a child of a generic unit is not something other than
a generic unit or a renaming of some other child of the same
generic unit.

Deleted by AI05-0004-1 as it is
redundant with 10.1.1(18).

Check that a child of a parent generic package can be
renamed within the declarative region of the parent generic.

C-Test. Combine this with the objective
for (17), line 1.

Check that a child of a parent generic package can be
instantiated within the declarative region of the parent generic.

That is, an instantiation within the parent
generic itself. This does not apply to the
children inherited by an instance, only
the original child unit. C-Test.

BA11009, BA11011,
BA11012

Check that the renaming of a child of a generic package
cannot occur outside the declaration region of the generic
package.

Check that a child of a parent generic package cannot be
instantiated outside of the declarative region of the generic
package.

CA11012, CA11013,
CA11014

Check that an instance of a generic with a with_clause for a
child inherits the child.

5

Negative BA11008

3 Redundant

(20) Legality Any child library subprogram.

Negative BA11007

(21) Legality Any library subprogram.

Negative BA1001A

(22) Definitions Subpart Any library renaming of a subprogram.

Negative 2

(23) Redundant

(24) Redundant

(25) Redundant

(26/2) 1-6,8 Definitions Subpart

7 Definitions

(26.1/2) Dynamic

(27) NonNormative A note

(28) NonNormative A note

(29) NonNormative An example...

(30) NonNormative

(31) NonNormative

(32) NonNormative

Check that an instance of a child generic inherits its children in
the presence of appropriate with_clauses (AI95-00331).

C-Test. Possibly use the example from
the AI.

Check that an instance of a generic does not inherit children
from the generic in the absense of a with_clause for the child.

Widely
used

Check that a child library subprogram may not override a user-
defined peimitive subprogram.

Widely
Used

Check that a library renaming of a subprogram cannot act as a
completion (of a library subprogram declaration).

B-Test. Untested in ACATS 2.x. Not
certain that this is testable; since the
renaming has to conform, it would be
hard to tell the difference between
acting as a completion and acting as a
replacement declaration. (Jean-Pierre
Rosen suggests using different default
parameters; as such, it could be a
replacement but a completion would be
illegal. Not sure of the worth of such a
test.)

Semantic Dependence - This should be
tested as part of 10.1.4(5)

Not
Testable

This rule is so goofy, we better test it
here.

Check that a unit contain the Address attribute semantically
depends on System.

But this is not testable (thankfully), as
System is now Pure, which means that it
will elaborate before anything else
anyway and can be allowed in Pure
units. It could ony cause trouble in a
Pure unit that the body of System
depended on -- a situation that user
couldn't construct.

Not
Testable

In order to test violation of this rule, we'd
have to guess what inappropriate effect
that elaboration has. But such effects on
only limited by the imagination of the
implementer.

(33) NonNormative

(34) NonNormative

(35) NonNormative ...end of example

10.1.2

(1) Redundant

(2) Syntax

(3) Syntax

(4/2) Syntax

(4.1/2) Syntax

(4.2/2) Syntax

(5) NameRes

Visibility CA1108A, CA1108B 2

Visibility 6

Visibility 2

Visibility 5

Visibility CA12002 All

Visibility 6

Negative 6

(6/2) Definitions Subpart Named, mentioned

(7/2) Redundant

(8/2) Legality Portion Lead-in for bullets below.

Negative Part 3 C-Test(s). This is pretty basic stuff.

(9/2) Legality 4

Widely
used

The normal case is tested by any
normal with clause.

We need to test that with clauses
"inherit" to bodies, children and
subunits.

Check that entities can be used in the body or subunits of a
unit if mentioned in a (normal) with clause on the specification.

The existing tests only check packages;
there would be some value to checking
subprograms as well. But this is unlikely
to be wrong, as it is so fundamental.

Check that entities can be used in the child of a unit if
mentioned in a (normal) with clause on the specification of the
(parent) unit.

C-Test. I can't find a test with this
objective, although it might happen in
some other test.

Check that entities can be used in the body or subunits of a
unit if mentioned in a limited with clause on the specification.

A C-Test. This probably can't be user-
oriented.

Check that entities can be used in a child of a unit if
mentioned in a limited with clause on the specification of the
(parent) unit.

C-Test. This probably can be user-
oriented.

Check that entities can be used in the body and subunits of a
unit if mentioned in a private with clause on the specification of
the unit.

Check that entities can be used in a child of a unit if
mentioned in a private with clause on the specification of the
(parent) unit.

C-Test. Try private and public children,
but not the illegal cases!

Check that entities cannot be used if not mentioned (or
declared in an entity mentioned) in a with clause.

B-Tests. You'd think this was tested, but
I can't find any in ACATS 2.x. This is an
extremely common error in practice, so
it should be tested. Make sure that
limited with and private with are covered
here.

CA12002 (private with
clause, root library
subprogram)

Check that the restrictions on the use of private child units in a
with clause do not apply to a public child.

Check that the declaration, body, or subunit of a private
descendant of unit L can mention a private child of L in a
with_clause.

C-Test. Try declarations (renames,
packages, subprograms), bodies, and
subunits.

(10/2) Legality 8

Negative BA12011 All

(11/2) Legality Part 4

Negative

Negative

BA12012 All

BA12012 All

Negative BA12013 All

(12/3) Legality Lead-in for bullets below.

Negative BA12014 All

BA12014 All

BA12014 All

BA12016 All

BA12016 All

BA12015 All

7

(13/2) Legality CA12002 All

Check that a body or subunit of a public descendant of a unit L
can mention a private child of L in a with_clause.

Simple legal case in BA12005. But no
tests of renames or subunits, no C-Test.

Check that a subprogram body acting as a declaration of a
public descendant of a unit L cannot mention a private child of
L in a non-private with_clause.

CA12002 (packages,
subprograms)

Check that the declaration of a public descendant of a unit L
can mention a private child of L in a private with_clause.

C-Tests. Try all kinds of declarations
(renames, generics?) for the private
unit, and for the use of the with clause.

BA11012 (private
renamings), BA12001,
BA12002, BA12003

Check that the declaration of a public descendant of a unit L
cannot mention a private child of L in a non-private
with_clause.

BA11012 (private
renamings), BA12004,
BA12005

Check that a unit that is not a descendant of a unit L cannot
mention a private child of L in a non-private with_clause.

Check that the declaration of a public descendant of a unit L
cannot mention a private child of L in a non-private limited
with_clause.

Check that a unit that is not a descendant of a unit L cannot
mention a private child of L in a limited with_clause.

Check that a unit that is not a descendant of a unit L cannot
mention a private child of L in a private with_clause.

(Combined for cases where none of the
bullets apply)

Check that a name visible due to a private with clause is not
allowed in a context-clause use_clause.

Check that a name visible due to a private with clause is not
allowed in the package visible part or subprogram
specification of the unit that has the with clause.

Check that a name visible due to a private with clause is not
allowed in the package visible part or subprogram
specification of a public descendant of the unit that has the
with clause.

Check that a name visible due to a limited private with clause
is not allowed in the package visible part or subprogram
specification of the unit that has the with clause.

Check that a name visible due to a limited private with clause
is not allowed in the package visible part or subprogram
specification of a public descendant of the unit that has the
with clause.

Check that a private with clause does not make entities in the
private part of a package visible.

Part added by AI05-0122-1. We don't
need a limited private with test here, as
generics aren't made visible by those
clauses anyway.

Check that the name of a generic child made visible by a
private with clause is not made visible in the package visible
part of the unit that has the with clause, or in a public
descendant of that unit.

“Sprouting”; create a B-Test, see AI05-
0122-1 for an example.

Check that a name mentioned in a private with clause can be
used in a private part, including those of nested and
descendant packages.

(14/2) Legality Part 2

(15/2) Legality CA12002 All

(16/2) Legality BA12015 All

(17/2) Redundant This should be tested by 10.1.6(2/2)

(18/2) Legality BA12009 All

(19/2) Legality Portion Lead-in for the bullets below.

(20/3) Legality BA12009 All

Added by AI05-0040. BA12017 All

Part 5

(21/3) Legality BA12010 All

BA12010 All

(22/3) Legality BA12010 All

BA12010 All

(23/2) NonNormative A note

(24/2) NonNormative An example...

(25/2) NonNormative

(26/2) NonNormative

(27/2) NonNormative

(28/2) NonNormative

(29/2) NonNormative

(30/2) NonNormative

(31/2) NonNormative ...end of example.

10.1.3

(1) Redundant

(2) Syntax

(3/3) Syntax

(4) Syntax

(5) Syntax

(6) Syntax

CA12002 (subprogram,
package bodies,
subprogram subunits)

Check that a name mentioned in a private with clause can be
used in a body, including in a subunit.

We could check more kinds of bodies
(package, protected, & task subunits,
generic units), but it doesn't seem likely
to fail.

Check that a name mentioned in a private with clause can be
used in the visible part of a private descendant.

Check that a name mentioned in a private with clause can be
used in a pragma in the same context clause.

Check that a limited with clause cannot appear on a body,
subunit, or renaming.

Check that a limited with clause for package L cannot be given
on the declaration of L.

Check that a limited with clause for package L cannot be given
on a descendant of L.

CA12001 (limited private
with)

Check that a limited with clause for a child of a package L can
be given on the declaration of L.

C-Test. Try a limited with of a public
child to declare mutually dependent
types between the child and parent.

Reworded by AI05-0077-1, doesn't
change testing.

Check that a limited with clause for package L cannot be given
in the scope of a nonlimited with clause that mentions L.

Check that a limited with clause for package L cannot be given
in the same context clause as a nonlimited with clause that
mentions L.

Reworded by AI05-0077-1, doesn't
change testing.

Check that a limited with clause for package L cannot be given
in the scope of a use clause that names an entity declared in
package L.

Check that a limited with clause for package L cannot be given
in the same context clause as a use clause that names an
entity declared in package L.

Aspect_Clauses are added by Ada
2012.

(7) Syntax

(8/2) Definitions Subpart Parent body, subunit

(9) Legality Any subunit.

Negative 2

2

(10/2) Legality Any stub.

Negative 3

3

4

(11/2) 1 Legality 4

2 Any subprogram stub.

Negative 3

3 Any subprogram stub.

Negative BA2011A

(12) 1 Legality Any subunit.

Negative 4

2 Any subprogram subunit.

Negative BA2011A

(13) 1 Legality Any stub.

Negative 2 Check that a stub must be immediately in the parent unit. B-Test (Try other kinds of stubs).

2 3 C-Test.

(14) Legality CA2002A

Negative BA2001C Check that the identifiers of stubs cannot be overloaded.

Widely
used

BA1020A (parent is
recompiled as a non-body)

Check that a subunit is illegal if the the parent body is not
present in the environment.

B-Tests. Straightforward case of a non-
existent parent is not tested.

BA1020B (parent has no
stubs after recompilation)

Check that a subinit is illegal if the parent body does not
contain an appropriate stub..

B-Tests. Straightforward cases of parent
that never had stubs is not tested.

Widely
used

BA2001B (non-existent
spec only)

Check that a package stub is illegal if it doesn't complete a
package specification.

B-Test: need to test cases where the
wrong kind of entity is the spec.

BA2001B (non-existent
spec only)

Check that a task stub is illegal if it doesn't complete a task
declaration.

B-Test: need to test cases where the
wrong kind of entity is the spec.

Check that a protected stub is illegal if it doesn't complete a
protected declaration.

B-Test. (Coverage is claimed in ACATS
2.5, but by a C-Test, which is
impossible.)

Check that a subprogram stub does not need to complete a
declaration.

C-Test. This was an Ada 83 objective
(10.2 T12), but there is no test.

Widely
used

Check that a subprogram stub is illegal if it completes
something other than a subprogram or generic subprogram
declaration.

B-Test. (Marked as covered, but tests
don't test this objective.)

Widely
used

Check that a subprogram stub must fully conform with its
specification (if any).

Widely
used

Check that a subunit must be the same kind of entity as its
stub.

B-Test. (Marked as covered, but tests
don't test this objective.)

Widely
used

Check that a subprogram subunit must fully conform with its
stub.

Widely
used

BA2001A (subprograms
only)

Check that a generic unit containing a stub can be instantiated
at a nested level.

Check that the identifiers of stubs in different units can be the
same.

(Other sorts of conflicts are illegal
homographs anyway.)

(15) PostComp 4 L-Test (protected stubs not tested).

(16) NonNormative A note.

(17) NonNormative

(18) NonNormative ...end of note.

(19) NonNormative An example...

(20) NonNormative

(21) NonNormative

(22) NonNormative

(23) NonNormative

(24) NonNormative ...end of example.

10.1.4

(1) Definitions

(2) 1 Definitions Subpart Order of items in an environment.

2 Definitions Visibility 2

Visibility 3

Visibility 3

Visibility 3

Visibility 2

Visibility 3

Visibility 3

Visibility 3

Visibility 5

Visibility 4

LA5007D, LA5007E,
LA5007F, LA5007G,
LA5008D, LA5008E,
LA5008F, LA5008G

Check that a partition without a subunit for some stub cannot
be created.

Widely
used

Environment is used in every
compilation.

A subunit acts like it is at the place of
the stub.

CA2003A (procedure
parent), CA2004A
(procedure and package
subunit parents)

Check that declarations from the parent body before the stub
can be used in a subprogram subunit.

C-Test. Need to try a library package
parent; it would be easy to make a test
like CA2004A to accomplish that.

Check that declarations from the parent body before the stub
can be used in a package subunit.

C-Tests. All kinds of parent bodies
(subprogram, package, subunit) should
be tried.

Check that declarations from the parent body before the stub
can be used in a task subunit.

C-Tests. All kinds of parent bodies
(subprogram, package, subunit) should
be tried.

Check that declarations from the parent body before the stub
can be used in a protected subunit.

C-Tests. All kinds of parent bodies
(subprogram, package, subunit) should
be tried.

BA2003A (procedure
parent)

Check that declarations from the parent body declared after
the stub cannot be used in a subprogram subunit.

B-Tests. Package and subunit parent
units should be tried.

Check that declarations from the parent body declared after
the stub cannot be used in a package subunit.

B-Tests. All kinds of parent bodies
(subprogram, package, subunit) should
be tried.

Check that declarations from the parent body declared after
the stub cannot be used in a task subunit.

B-Tests. All kinds of parent bodies
(subprogram, package, subunit) should
be tried.

Check that declarations from the parent body declared after
the stub cannot be used in a protected subunit.

B-Tests. All kinds of parent bodies
(subprogram, package, subunit) should
be tried.

Check that declarations made accessible by a with clause on
a subunit are not visible in the parent body after the stub of the
subunit.

B-Tests. This checks that the subunit
isn't a purely syntax insertion.

CA13A01, CA13A02
(package parent)

Check that declarations from ancestors other than the parent
body can be used in a subprogram subunit.

C-Tests. All kinds of parent bodies
(subprogram, package, subunit) should
be tried.

Visibility 5

Visibility 5

Visibility CA13001 (package parent) 4

CA2007A (packages only) 1

3 Definitions Any reference to a library unit tests this.

(3/2) Impl-Def

(4/1) NameRes CA14028

3

CA1012A

5

CA1011A

(5) 1A Legality

Negative 6

Check that declarations from ancestors other than the parent
body can be used in a package subunit.

C-Tests. All kinds of parent bodies
(subprogram, package, subunit) should
be tried.

Check that declarations from ancestors other than the parent
body can be used in a task subunit.

C-Tests. All kinds of parent bodies
(subprogram, package, subunit) should
be tried.

Check that declarations from ancestors other than the parent
body can be used in a protected subunit.

C-Tests. All kinds of parent bodies
(subprogram, package, subunit) should
be tried.

Check that the elaboration of a stub elaborates the subunit
body.

C-Tests for subprograms, tasks, and
protected types are needed. These can
only test that Program_Error isn't raised,
thus the low priority.

Widely
used

Widely
used

Methods of compilation are implicitly
tested by running the ACATS.

Check that a library subprogram body replaces an instance of
a generic subprogram with the same name.

Check that a library subprogram body completes a
subprogram declaration with the same name.

C-Test. Untested in ACATS 2.x. The
only thing that can be tested is that
recompilation of a subprogram body
(replacement with a different body) does
not require semantic dependents to be
recompiled. This is only interesting for
"traditional model" compilers, although it
simulates normal editing of a body and
thus has to work for all compilers. Note
that the error cases (not conforming,
inconsistent) are tested elsewhere.

Check that a library subprogram body completes a generic
subprogram declaration with the same name.

Check that a library subprogram body replaces a library
package or library renames with the same name and acts as a
definition.

C-Test. I would have expected an Ada
83 test for this, but I cannot find one.

BA1010A, BA1010B, ...,
BA1010Q, BA1011B,
BA1011C

Check that a library subprogram body that completes a
subprogram (or generic subprogram) declaration with the
same name is illegal if it is not type conformant.

This is sort of a combination test, but it's
too important to not test.

Check that a library subprogram body can replace a non-
conformant library subprogram body with the same name if
that body does not have a separate specification.

Another combination test that's
important.

Widely
Used

Any unit that compiles and depends on
another. "1A" here refers to the part
before the semicolon.

BA1101A, BA1101B,
BA3001A, BA3001B,
BA3001C, BA3001E,
BA3001F, BA3001G

Check that a compilation unit cannot be compiled if some unit
that it semantically depends on has not been compiled.

As B-Tests, we can only test cases
where the unit in question never exists.
Everything else is an L-Test because of
various permissions. We only have Ada
83 tests, so we need tests for child units
and library renames (low priority), and
for limited views (via limited withs,
higher priority).

1B

(6/2) Impl-Def Untestable: this is not required.

(7/2) 1 Impl-Def Might not be removed. Really also covered by 10.2(27) tests.

2 Impl-Def Might not be removed.

3 Impl-Def Might not be removed. Covered by 10.2(19) tests.

4 Impl-Def Might not be removed.

5 Impl-Def Might not be removed.

Negative CA13002, CA13003

(8) NonNormative A note

(9) NonNormative A note

(10) NonNormative A note

10.1.5 (1) Redundant

(2) 1 Definitions Defines Program Unit Pragma

2 NameRes

3 NameRes Subpart Test with each pragma.

(3) Legality Lead-in for following bullets.

(4) Legality Subpart Test with each pragma.

Negative 4

Negative 4

Negative 2

(5/1) Legality Subpart Test with each pragma.

Check that a compilation unit is illegal if it depends on two
versions of the same unit, or on an earlier version of itself.

This is untestable, because
implementation permissions allow
automatic recompilation. Do not confuse
this rule with 10.2(27), which is
extensively tested with L-Tests.

We cannot insist that only legal units be
entered (withable); this permission
allows illegal units in the environment.
10.2(27) does not allow them in a final
program, however.

These are cases where the unit must
not be removed.

Check that two child units and/or subunits may have the same
simple name as long as they don't have the same full
expanded name.

Check that the name in a program unit pragma cannot be
declared in an outer declarative region.

B-Test. Pragmas Convention, Import,
Export, Inline, Pure, Preelaborate,
Elaborate_Body. (Annex E pragmas
should be tested there). No tests in Ada
95 ACATS; this was mistakenly marked
as "nothing new" in it's coverage
document. But this whole concept is
new!

Not
Testable

Check that a program unit pragma cannot be given first in a
compilation.

B-Test. Pragmas Convention, Import,
Export, Inline, Pure, Preelaborate,
Elaborate_Body.

Check that a program unit pragma cannot follow a unit that is
not a subprogram, generic subprogram, or instantiation.

B-Test. Pragmas Convention, Import,
Export, Inline, Pure, Preelaborate,
Elaborate_Body. Try packages,
renames, and subunits.

BA15002 (Preelaborate,
Pure)

Check that a program unit pragma following a subprogram,
generic subprogram, or instantiation, cannot name some other
library unit in the same compilation (or none at all).

B-Test. Pragmas Convention, Import,
Export, Inline, Elaborate_Body. For
inline, see the objectives for 10.1.6(5).

Negative Part 2

2

2

2

(6) Legality Subpart Test with each pragma.

Negative Does not apply to library unit pragmas. 4

4

(7/3) Legality Subpart Test with each pragma.

Negative All

Modified by AI05-0132-1. All

(7.1/1) StaticSem 3

(8) 1 PostComp Negative BA15001 (Suppress) 2

2 Redundant

3 PostComp Subpart Test with the individual pragmas.

(9/2) Impl-Def 4

(10/1) Impl-Adv

BA15002 (Preelaborate,
Pure), BA15003
(Elaborate_Body)

Check that a program unit pragma given in the visible part of a
program unit cannot name any unit other than the one it is in.

B-Test. Try other pragmas Convention,
Import, Export, Inline. (Preelaborate
error is tested twice in BA15002, likely
bug, probably Elaborate_Body was
intended in file BA150023.A).

BA15002 (Inline,
Elaborate_Body,
Preelaborate, Pure)

Check that a program unit pragma cannot be given in the
formal part of a generic unit.

B-Test. Try other pragmas Convention,
Import, Export.

BA15002 (Elaborate_Body,
Preelaborate, Pure)

Check that a program unit pragma cannot be given in the
private part of a unit.

B-Test. Try other pragmas Convention,
Import, Export.

BA15002 (Elaborate_Body,
Preelaborate, Pure)

Check that a program unit pragma given in the visible part of a
program unit cannot follow any nested declaration.

B-Test. Try other pragmas Convention,
Import, Export, Inline.

Check that a program unit pragma given in a declarative_part
and after the first declaration cannot name a unit declared
somewhere other than this declarative_part.

B-Test. Pragmas Convention, Import,
Export, Inline. Be sure to check naming
the enclosing unit.

Check that a program unit pragma given in a declarative_part
and after the first declaration cannot omit the name or name
something other than a program unit.

B-Test. Pragmas Convention, Import,
Export, Inline.

BA15002
(Elaborate_Body,
Preelaborate, Pure)

Check that a library unit pragma cannot name a nested unit
from within that unit.

BA15002
(Elaborate_Body,
Preelaborate, Pure)

Check that a library unit pragma cannot be given in a nested
package without a name.

BA15002 (Elaborate_Body,
Preelaborate, Pure)

Check that a library unit pragma cannot be given other than as
the first item in the visible part.

Check that a library unit pragma applied to a generic does not
apply to its instances.

B-Test and C-Test possible, for
Pure/Preelaborate, and various Annex E
pragmas. Test Annex E in Annex E.

BA1507A,
CA1507A test
this for Pure and
Prelaborate

Check that a configuration pragma cannot appear after the
first compilation unit of a compilation.

B-Test. Try other pragmas:
Assertion_Policy, Restrictions,
Unsuppress. Test Annex D and H
pragmas with those annexes.

Check that configuration pragmas confirming initially selected
partition or system-wide options are accepted.

C-Test(s). Try pragmas
Assertion_Policy, Restrictions,
Suppress, Unsuppress. Provide an
individual pragma in a compilation by
itself, then compilations with confirming
pragmas.

Not testable, would depend on the
individual pragmas.

10.1.6

(1) Redundant

(2/2) 1 StaticSem

Negative BA11003 Check that a child unit's parent cannot be a nested package.

Negative All

Negative BA16002 All

2 StaticSem

BA16001 All

BA16001 All

(3) StaticSem

Negative 6

4

Negative 6

(4) StaticSem Any legal subunit will test basic cases.

CA2004A, CA13003

3 C-Test. Untested in ACATS 2.x.

Negative BA2001F

Negative 3

(5) StaticSem 3

Widely
Used Any legal with clause will test.

BA12008 (normal with),
BA16001 (limited with),
BA16002 (private with)

Check that a child unit cannot be named in a with_clause by
its simple name or any abbreviated form of its full name.

Check that a unit nested in a library package cannot be
mentioned in a nonlimited_with_clause.

Widely
Used

Any legal limited with clause will test
(C-test for 10.1.2(20) will check child
units).

Check that a package nested in a library package cannot be
mentioned in a limited_with_clause.

Check that library subprograms, generic units, and library
renames of them cannot be mentioned in a
limited_with_clause.

Widely
Used

Any legal use of Elaborate or
Elaborate_All will test.

Check that a pragma in a context clause cannot name units
not given in previous with_clauses.

B-Test. Pragma Elaborate and
Elaborate_All. Marked as untested in
ACATS 2.x; Ada 83 10.5 T9 also
untested.

Check that a use clause given in a context clause can name
units mentioned in previous with_clauses, and declarations in
those units.

C-Test. Try both package use and use
type. Marked as untested in ACATS 2.x.
May happen in other tests, but not all
cases.

BA1101G (previously use
visible)

Check that a use clause given in a context clause cannot
name entities that are neither units mentioned in previous
with_clauses or declarations in those units.

B-Test. Try both package use and use
type. Try using packages that are in the
environment, but not withed. Marked as
untested in ACATS 2.x. Ada 83 10.1 T9
also untested.

BA1101G (Dan
added a child unit
subtest)

Widely
Used

Check that the parent_unit_name of a subunit can name a
stub in a subunit.

Check that the parent_unit_name of a subunit can name a
stub in a child unit.

Check that the parent_unit_name of a subunit cannot directly
name a stub (without naming the parent unit).

Check that the parent_unit_name of a subunit cannot name a
child unit without naming the parent of the child unit.

B-Test. Untested in ACATS 2.x.
Assuming that we have a stub S in a
parent unit P.C, we mean to test that
C.S is not a legal parent_unit_name.

Any pragma given as a compilation unit
will test, but these are rare (so we test
this here).

Check that a pragma Inline given after a library subprogram
declaration or library instance can name the declaration.

C-Test. Be sure to try child
subprograms. We're only trying Inline
here for simplicity, others will be tested
in place. CA21001 does test this for
Preelaborate.

Negative 4

(6/2) StaticSem

3

1

10.2 (1) Definitions Partition

(2) 1 Definitions Partition

2 Redundant

3 Definitions Explicitly assigned units

4 Impl-Def

5-6 Definitions

(3) StaticSem

(4) StaticSem Every legal program tests this.

(5) StaticSem 2 Check that a needed package body is included in a partition.

(6) StaticSem

(6.1/2) StaticSem CA20003 All

Negative (For the whole set.) 2

(7) 1 Impl-Def

Check that a pragma Inline following a subprogram, generic
subprogram, or instantiation, cannot name some other library
unit (or none at all).

B-Test. Be sure to try naming some
other unit in the same compilation.
We're only trying Inline for simplicity.
This should have been tested for Ada
83 (6.3.2 T2) but was not.

CA11012, CA11013,
CA11014

Check that the generic child of a generic library unit can be
mentioned in a with clause.

Check that the generic child of a generic library unit can be
mentioned in an Elaborate or Elaborate_All pragma.

C-Test. There are no tests for
Elaborate_All and no new tests for
Elaborate in ACATS 2.x, so this must be
untested.

Check that the generic subprogram child of a generic library
package can be followed with a pragma Inline naming the
child.

C-Test. But the pragma will be ignored
on most implementations, so this is very
low priority.

Note: We only test active partitions with
main subprograms in this clause; other
types of partitions are tested by Annex
E.

To some extent, this is tested by
running the ACATS.

Needed. Note we will test the definition
of "needed" here when possible, it
really isn't used in other rules.

This rule is really redundant with the
one that says any explicitly assigned
units are included in a partition.

Widely
Used

Try a package body that has non-trivial
elaboration, and is only needed because
of pragma Elaborate_Body.

Widely
Used

Every legal program with subunits tests
this.

Check that a package that is needed only because it is
referenced in a limited with clause in included in a partition.

Check that a unit that is compiled (and in the environment) but
not needed is not included in a partition.

C-Test. Use a package and instance
with non-trivial elaboration to test. Not
very likely to be wrong.

Main subprogram. Every ACATS test
implicitly tests this.

2 Legality Negative

(8) Definitions

(9) Definitions Subpart Elaboration dependence Test as part of Elaborate pragma tests.

(10) Definitions Structure of the environment task.

(11) Definitions

(12/2) Definitions

(13) Dynamic Portion Lead-in for the following bullets.

(14) Dynamic CA5003A, CA5003B 3

(15/3) Dynamic Changed to aspect by AI05-0229-1. 6

(16) Dynamic

(17) Dynamic 2

(18) 1 PostComp LA5001A

4

4

2 Impl-Def Elaboration order beyond rules.

(19) CA20002

Negative LA20001

Check that a main subprogram cannot be a generic
subprogram, package, generic package, or package renames.

Would need a B-Test, but not testable.
A partition does not require a main
program, and an implementation could
use the same command that designates
a main subprogram to "explicitly assign"
a (single) package to a partition. Such a
partition would be a legal "mainless"
ones. There's no benefit to requiring
different commands for "mainless"
partitions (nor is there any RM support
for that). Indeed, such a B-Test was
deleted during the development of
ACATS 2.0.

Environment task - every legal test
tests this.

Check that the elaboration order of units is such that there are
no forward elaboration dependencies.

C-Tests are needed for Ada 95 cases
such as child units (and parent units),
and library renames.

Check that a unit to for which aspect Elaborate_Body is True
is elaborated immediately after its specification.

C-Test. This marked as untested in
ACATS 2.x.

Not
Testable

Pure units have no interesting
elaboration to check.

The only possible test is to check that
Program_Error is not raised by calls on
a Pure unit from an impure unit. But the
checks are likely to be omitted even if
the unit wasn't elaborated properly, so a
test would be useless.

Check that preelaborable units are elaborated before any non-
preelaborable units.

C-Test. Check cases where some other
order might make sense in the absence
of the Preelaborate pragma. Not tested
in ACATS 2.x.

Check that a partition which contains a unit A which withs and
mentions in an Elaborate pragma a unit B whose body withs A
cannot be created.

Check that a partition which contains a unit A which withs and
mentions in an Elaborate_All pragma a unit B whose body
depends on units that with A cannot be created.

L-Test. Marked as not testable in
ACATS 2.x. The AARM disagrees.

Check that a partition which contains two units which contain
pragma Elaborate_Body and whose bodies with the other
unit cannot be created.

L-Test. Marked as not testable in
ACATS 2.x. The AARM disagrees.

Check that a partition can be created even of the environment
contains more than one unit with the same expanded name.

Check that two units or subunits with the same expanded
name cannot be included in the same partition.

(20) Dynamic Portion Lead-in for the following bullets.

(21) 1 Dynamic Any test checks this rule.

2-3 Impl-Def

(22) General "or"

(23) Dynamic

(24) Impl-Def

(25) 1 Dynamic Tested by running ACATS tests.

2 Impl-Def

3-5 Dynamic C761001

CXC7004

4

(26) 1 BoundedErr 1

2 BoundedErr Unspecified behavior

(27) PostComp This covers all consistency checks. 2 L-Tests (child unit bodies not tested).

3

LA14001 - LA14027 5 Check that an inconsistent partition cannot be created.

Widely
Used

Many compilers don't even support
parameters or results.

Not
Testable

It doesn't make sense to try to test for
extra effects in this case, as they could
be anything.

These are tested by running the
ACATS tests.

Not
Testable

Check that controlled objects declared immediately within a
library package are finalized following the completion of the
environment task (and prior to termination of the program).

Check that the environment task waits for the termination of
library-level tasks, and that Is_Callable is properly False while
waiting.

This also checks that the environment
task is the master of such library-level
tasks.

Check that controlled objects are finalized even if the
environment task is aborted.

C-Test. This will require using the
Task_Id library to abort the environment
task (it doesn't have a name), so this will
have to be a CXC test. Careful: avoid
tasks, see 10.2(30).

Check that a task that is created and activated after the
environment task starts finalization either works normally (but
possibly not waiting for termination) or raises Program_Error.

C-Test. This mainly checks that the
program doesn't crash. This can happen
in sort-of reasonable code, so it
probably should be checked. This would
have to happen in a finalization handler;
take care that the task does its action
before the finalization handler is allowed
to return (otherwise an incorrect result
might appear to happen from allowed
early termination).

Not
Testable

LA5007A, LA5007B,
LA5007C, LA5008A,
LA5008B, LA5008C

Check that a partition cannot be created if a needed library
unit is missing.

LA5007D, LA5007E,
LA5007F, LA5007G,
LA5008D, LA5008E,
LA5008F, LA5008G

Check that a partition without a subunit for some stub cannot
be created.

L-Tests (protected subunits not tested).
This objective is the same as
10.1.3(15).

L-Tests (protected subunits and child
units not tested). These tests are all
attributed to 10.1.4(5), but that can only
be tested at link-time, and the post-
compilation rule is here, not in 10.1.4.

Part 5

(28) 1 Definitions

2 Impl-Def

(29) Impl-Def

1

1 Check that a child subprogram can be a main subprogram.

(30) Impl-Def

(31) NonNormative A note

(32) NonNormative Another note

(33) NonNormative Another note

(34) NonNormative Last note

10.2.1 (1) General

(2) Syntax

(3) Syntax

(4) Definitions

(4.1/2) Syntax

(4.2/2) Syntax

(5) Legality Portion Lead-in for following bullets.

(6) Legality 4

(7/5) Legality Portion

LA20002 (subprogram
body), LA20003
(package spec)

Check that a partition inconsistent because of the use of
limited withs cannot be created.

L-Tests. Check that significantly
changing a unit (for instance, deleting a
type) referenced through a limited
with makes the partition
inconsistent. This really is part of
the previous objective. Test this in
child units, subunits, etc.; check
both limited with only and that a
limited with and a regular with see
the same version of a unit.

Widely
used

Active partition -- applies to virtually all
tests.

Widely
used

Virtually all tests have this sort of main
subprogram.

Check that a subprogram generic instantiation can be a main
subprogram

C-Test. This has low priority because
the ARG voted no action rather than
confirm for AI-172.

C-Test. This has low priority because
the ARG voted no action rather than
confirm AI-172. Not sure it is worth
reopening that can of worms.

But finalization still has to happen, see
10.2(25).

Illegal cases of library unit pragma
rules are tested in 10.1.5.

BA21002 (Pure, non-
generic), BA21A02
(Preelaborate, generic),
BA21003 (Preelaborate,
generic package subunit)

Check that the elaboration of a preelaborated unit cannot
execute a non-null statement.

B-Test: Try a statement without a call (if
or case with a static expression), and try
in a non-generic package subunit. Try
cases where the category is specified by
an aspect rather than a pragma.

Modified by AI12-0175-1, lead-in for
following bullets.

(7.1/5) Legality Moved by AI12-0175-1, not changed. 4

4

4

(7.2/5) Legality 1

(7.3/5) Legality 1

(7.4/5) Legality 1

(8) Legality 4

5

BA21002 (Pure, body),
BA21A01 (Preelaborate,
instance), BA21A02
(Preelaborate, generic
body), BA21A03
(Preelaborate, spec),
BA21003 (Preelaborate,
generic package
subunit)

Check that the elaboration of a preelaborated unit cannot call
a non-static function.

B-Test: try cases in Pure bodies and
Preelaborate specs; also in non-generic
package subunits. Try cases where the
category is specified by an aspect rather
than a pragma. (Careful: avoid the
conversion functions allowed by the
following bullets.)

BA21002 (Pure, body),
BA21A02 (Preelaborate,
generic body), BA21A03
(Preelaborate, spec)

Check that the elaboration of a preelaborated unit can include
a call to a static function.

C-Test: Try in a package subunit. Need
some executable tests with these
pragmas (not just occurrences in B-
Tests). Try cases where the category is
specified by an aspect rather than a
pragma.

The elaboration of a generic unit does
nothing, so none of these rules apply in
a generic spec (bodies have their own
rules).

BA21A01 (Preelaborate,
formal function)

Check that the elaboration of a preelaborated generic
specification can include a call of any function (including a
formal subprogram).

C-Test: Rechecked in the instance, only
could pass for a formal function. Try
Pure, OK instances. Try cases where
the category is specified by an aspect
rather than a pragma.

Added by AI12-0175-1, post-
Corrigendum.

Check that the elaboration of a preelaborated unit can include
a call to an instance of Ada.Unchecked_Conversion.

C-Test: Try cases in pure and
preelaborated units, both specs and
bodies. The parameters have to be
static expressions. Wait to test this until
the next document (Amendment?) is
issued.

Added by AI12-0175-1, post-
Corrigendum.

Check that the elaboration of a preelaborated unit can include
a call to a function declared in System.Storage_Elements.

C-Test: Try cases in pure and
preelaborated units, both specs and
bodies. The parameters have to be
static expressions. Wait to test this until
the next document (Amendment?) is
issued.

Added by AI12-0175-1, post-
Corrigendum.

Check that the elaboration of a preelaborated unit can include
a call to the functions To_Pointer and To_Address declared in
an instance of System.Address_to_Access_Conversions.

C-Test: Try cases in pure and
preelaborated units, both specs and
bodies. The parameters have to be
static expressions. Wait to test this until
the next document (Amendment?) is
issued.

BA21002 (Pure, body),
BA21A01 (Preelaborate,
instance), BA21A02
(Preelaborate, generic
body), BA21A03
(Preelaborate, spec)

Check that the elaboration of a preelaborated unit cannot
include the evaluation of a primary that is the name of an
object unless it is static or a discriminant.

B-Test: try cases in Pure bodies and
Preelaborate specs; also in package
subunits. Try cases where the category
is specified by an aspect rather than a
pragma.

BA21002 (Pure), BA21A02
(Preelaborate, generic
body)

Check that the elaboration of a preelaborated unit can include
the name of a static object.

C-Test: Try in package subunits and
with Preelaborate. Try cases where the
category is specified by an aspect rather
than a pragma.

BA21A02 (in default) 5

2

(9/3) 1 Legality

5

3

BA21002 (Pure) 4

2

3 C-Test.

(10/2) Legality Portion Lead-in for following bullets.

Check that the elaboration of a preelaborated unit can include
the name of an enclosing type's discriminant.

C-Test: Try in package subunits and
using Pure. Use the discriminant to
define a discriminant dependent type
and declare an object. BA21002 claims
to test this, but the expression is not
evaluated when the type is elaborated
and the type is not otherwise used, so it
is bogus.

The elaboration of a generic unit does
nothing, so none of these rules apply in
a generic spec (bodies have their own
rules).

BA21A01 (Preelaborate,
formal object)

Check that the elaboration of a preelaborated generic
specification can include the evaluation of a primary.

C-Test: Rechecked in the instance, only
would pass for a formal object. Try
Pure, OK instances. Try cases where
the category is specified by an aspect
rather than a pragma.

The initialization part of the rule was
restored by AI05-0028.

BA21002 (Pure, body),
BA21A01 (Preelaborate,
instance), BA21A02
(Preelaborate, generic
body), BA21A03
(Preelaborate, spec),
BA21003 (Preelaborate,
generic package
subunit)

Check that the elaboration of a preelaborated unit cannot
include the creation of an object of a type without
preelaborable initialization unless it has an initialization
expression.

Here we'll test the objects; we'll try to
test all of the kinds of types elsewhere.

Check that a preelaborated unit can contain declarations of
objects of types without preelaborable initialization inside
subprograms.

C-Tests: Try a variety of types for the
object, and try in subprogram subunits.
Try Preelaborate only (Pure has stricter
rules, tested at 10.2.1(15.2/2)).

BA21A02 (Preelaborate,
generic body)

Check that the elaboration of a preelaborated unit can include
the creation of an object of a type with preelaborable
initialization that does not have an initialization expression.

C-Tests: Try a variety of types for the
object, and try in package subunits and
non-generic packages (all parts). Try
Preelaborate only (Pure has stricter
rules). BA21002 sort of tries this, but it's
intended to test Pure rather than
Preelaborable_Initialization.

Check that the elaboration of a preelaborated unit can include
the creation of an explicitly initialized object of any type
(including a type without preelaborable initialization).

C-Test: Try preelaborate and complex
(but allowed) initialization expressions.

The elaboration of a generic unit does
nothing, so none of these rules apply in
a generic spec (bodies have their own
rules).

BA21A01 (Preelaborate,
formal type)

Check that the elaboration of a preelaborated generic
specification can include the creation of an object of any type.

C-Test: Rechecked in the instance, only
a formal type could pass. We'll test Pure
at 10.2.1(15.2/2).

BA21002 (Pure, body),
BA21A01 (Preelaborate,
instance), BA21A02
(Preelaborate, generic
body), BA21A03
(Preelaborate, spec)

Check that the elaboration of a preelaborated unit cannot
evaluate an extension aggregate with an ancestor type that
does not have preelaborable initialization.

Check that the elaboration of a preelaborated unit can
evaluate an extension aggregate with an ancestor type that
does have preelaborable initialization.

(10.1/3) Legality BA21A02, BA21003

Added by AI05-0028. 6

Added by AI05-0028. 5

(10.2/2) Legality 5

(10.3/2) Legality 6

(10.4/2) Legality BA21A02

(11/3) 1 Definitions Subpart

2 Redundant

3 Legality BA21003 Additional tests are called out above.

CA21001

BA21003

4 Legality BA21A01

5 Legality Subpart Any legal test checks this.

Clarification from AI05-0034. 7

Widening from AI05-0034. 5

Negative

(11.1/2) Legality Portion

Check that the elaboration of a preelaborated generic body
cannot create an object of a formal private type or extension.

The test objective for BA21A02 is too
narrow, but the test is OK.

Check that the elaboration of a preelaborated generic body
cannot create an object of a discriminated formal derived type.

B-Test. Try cases with the category
specified by either pragma or aspect.

Check that the elaboration of a preelaborated generic body
can create an object of a formal private type, private
extension, or discriminanted derived type if the formal type has
a pragma Preelaborable_Initialization.

C-Test. Try cases with the category
specified by either pragma or aspect.

Check that the elaboration of a preelaborated generic body
cannot evaluate a primary based on a generic formal type.

B-Test. Try attributes of a formal type in
contexts that would otherwise be OK.
Consider using the existing foundation
(FA21A00) in a new test. Try cases
where the category is specified by an
aspect rather than a pragma.

Check that the elaboration of a preelaborated generic body
cannot evaluate a primary based on a generic formal object.

B-Test. Try generic in objects in
contexts that would otherwise be OK.
Combine with previous objective. Try
cases where the category is specified by
an aspect rather than a pragma.

Check that the elaboration of a preelaborated generic body
cannot call a formal subprogram.

Tested by previous checks. AI05-0243-
1 makes this an optional aspect.

We should try some cases where the
category is specified by an aspect. But
we'll try only a few such cases as the
pragma is preferred. See above.

Check that package subunits of a preelaborated package
enforce the restrictions on preelaborated units.

Check that package subunits of a preelaborated subprogram
do not enforce the restrictions on preelaborated units.

Check that a preelaborated package can have a non-
preelaborated child unit.

Check that the restrictions on preelaborated units are enforced
in the private part of a preelaborable instance.

Check that a preelaborated unit can have a semantic
dependence on the limited view of a preelaborated unit.

C-Test. Use a limited with, of course.
Try a Pure unit and a Preelaborated
unit.

Check that a preelaborated unit can have a semantic
dependence on the limited view of a non-preelaborated unit.

C-Test. This probably can't be usage-
oriented.

BA21003, BA21004 (both
try a with clause, child unit)

Check that a preelaborated unit cannot have a semantic
dependence on a non-preelaborated unit.

Lead-in for following bullets. In theory,
these should be tested at 10.2.1(9/2),
but there are so many cases, we'll test
them here.

(11.2/3) 1 Legality AI05-0028 fixed a typo here. 3 B-Test. Try a private extension.

5

BA21A02

4 B-Test.

5

2 Legality

(11.3/2) Definition Subpart Test this with (11.5/2).

(11.4/3) 1 Legality 4 B-Test.

4 B-Test.

As changed by AI05-0221-1. 4

4

2 Legality As revised by AI05-0028-1. 3

(11.5/2) Legality 3 Check that an elementary type has preelaborable initialization. C-Test.

2

3 C-Test.

3 C-Test.

4 Check that an interface type has preelaborable initialization.

BA21A03 (private)

Check that the partial view of a private type or private
extension does not have preelaborable initialization (without
the pragma).

Check that a protected type without entries does not have
preelaborable initialization (without the pragma).

B-Test. Declare an object in a
preelaborated unit.

Check that a generic formal private type does not have
preelaborable initialization (without the pragma).

Check that a generic formal derived type does not have
preelaborable initialization (without the pragma).

BA21002 (Pure,
anonymous)

Check that a protected type with entries does not have
preelaborable initialization.

B-Test. Try a protected type definition
and separate object, in a Preelaborated
unit.

BA21A02, BA21A03
Check that a task type does not have preelaborable
initialization.

Check that a type derived from a type that does not have
preelaboration initialization does not have preelaborable
initialization.

Check that a type extension derived from a type with
preelaborable initialization does not have preelaborable
initialization if it has components that don't have it.

Check that a type extension derived from a type with
preelaborable initialization does not have preelaborable
initialization if it has discriminants that don't have it.

B-Test; try untagged derivation (see
AI05-0221-1).

Check that a type derived from a type with preelaborable
initialization (and with extension components that have
preelaborable initialization) also has preelaboration
initialization.

C-Test. Try both extensions with and
without components and untagged
derived types.

BA21A01, BA21A02,
BA21A03

Check that a controlled type does not have preelaborable
initialization (without the pragma), unless it has an Initialize
procedure that is a null procedure.

Add a test case for a known null
Initialize procedure.

BA21A02 (of a formal
private type), BA21A03
(of a private type)

Check that an array type whose component type does not
have preelaborable initialization does not have preelaborable
initialization itself.

B-Test. Try some other cases
(controlled types, records with defaults,
etc.)

Check that an array type whose component type does have
preelaborable initialization also has preelaborable initialization.

BA21A02 (variable name,
function call), BA21A03
(variable name),

Check that a record type which has a component that is
initialized with a function call or variable name does not have
preelaborable initialization.

BA21A02 (controlled
component).

Check that a record type which has a component whose type
does not have preelaborable initialization does not have
preelaborable initialization.

Check that a record type all of whose components have types
with preelaborable initialization or have default expressions
that are static has preelaborable initialization.

C-Test. Test this by using it as a
progenitor of an extension that
otherwise has Pinit.

(11.6/2) 1 Definitions Subpart Tested in the next paragraph.

2 Legality Subpart

Negative 4 B-Test.

(11.7/3) 1 Legality Negative As revised by AI05-0028. 4

5 B-Test.

5 B-Test.

2 Legality 6

Negative 5

3 Legality As revised by AI05-0028. 6

5 B-Test.

6 B-Test.

4 Legality As added by AI05-0028. 6

Negative 6

Negative 5 B-Test.

Negative 4 B-Test.

5 Legality Subpart Tested in previous objectives.

(11.8/2) 1 Legality Subpart Tested with next sentence.

Negative 4 B-Test.

4 B-Test.

Legal cases are tested in the next
paragraph.

Check that a pragma Preelaborable_Initialization cannot
appear in a private part or body.

Check that a pragma Preelaborable_Initialization cannot
denote a type declared other than in the package where it
appears.

B-Test. Try types declared in other
packages and in nested packages.

Check that a pragma Preelaborable_Initialization cannot
denote an elementary type.

Check that a pragma Preelaborable_Initialization cannot
denote a non-first subtype.

Check that a pragma Preelaborable_Initialization can be
applied to a private type or private extension if the full view
has preelaborable initialization, and that the type then has
preelaborable initialization.

C-Test. Don't forget to use the types to
declare objects.

Check that a pragma Preelaborable_Initialization cannot be
applied to a private type or private extension if the full view
does not have preelaborable initialization.

B-Test. Try full types declared in a
generic private part (to test sentence 4).

Check that a pragma Preelaborable_Initialization can be
applied to a protected type without entries if each component
has preelaborable initialization, and that the type then has
preelaborable initialization.

C-Test. Don't forget to use the types to
declare objects.

Check that a pragma Preelaborable_Initialization cannot be
applied to a protected type without entries if any component
does not have preelaborable initialization.

Check that a pragma Preelaboration_Initialization cannot be
applied to a protected type with entries.

Check that a pragma Preelaborable_Initialization can be
applied to a controlled type if the parent type and all
components have preelaborable initialization and Initialize is a
null procedure, and that the type then has preelaborable
initialization.

C-Test. Don't forget to use the types to
declare objects.

Check that a pragma Preelaborable_Initialization cannot be
applied to a controlled type if the parent type or any
component does not have preelaborable initialization or
Initialize is not a null procedure.

B-Test. Try Initialize routines defined in
a generic private part.

Check that a pragma Preelaborable_Initialization cannot be
applied to a task type.

Check that a pragma Preelaborable_Initialization cannot be
applied to a record or array type which has a component that
does not have preelaborable initialization.

Check that a pragma Preelaborable_Initialization given in a
formal part cannot be applied to any type not declared in the
formal part.

Check that a pragma Preelaborable_Initialization given in a
formal part cannot be applied to any formal type other than a
formal derived or private type..

2 Legality 5 C-Test.

6 B-Test.

(12) Impl-Adv ...even if it wasn't advice.

(13) Syntax

(14) Syntax

(15) Definitions

(15.1/2) StaticSem Portion

(15.2/2) StaticSem BA21002

BA21002 3 C-Test. Try subunits, too.

(15.3/2) StaticSem 5

8

(15.4/3) StaticSem 7

6

(15.5/3) StaticSem Uses change of AI05-0035. 7

7

(15.6/3) Legality Rule added by AI05-0035. 5

5

Check that if a formal type has pragma
Preelaborable_Initialization, the generic can be instantiated
with actual types that have preelaborable initialization.

Check that if a formal type has pragma
Preelaborable_Initialization, an attempt to instantiate the
generic with an actual type that does not have preelaborable
initialization is rejected.

Not
Testable

Illegal cases of library unit pragma
rules are tested in 10.1.5.

Lead-in for following bullets; using the
fixes of AI05-0035.

We'll test these here where it is more
obvious that they're covered.

Check that the elaboration of a pure unit cannot elaborate a
variable declaration.

Check that variables can appear in a pure unit in subprogram,
task, and protected bodies.

Check that the elaboration of a pure unit cannot evaluate an
allocator of an access-to-variable type.

B-Test. This has to be for an access
discriminant in an discriminant
constraint of a constant. Try cases with
the category specified by either pragma
or aspect.

Check that the elaboration of a pure unit cannot evaluate a
constant declaration for a private type or private extension,
even if that type has preelaborable initialization.

B-Test. Try cases with the category
specified by either pragma or aspect.

"Defined by the language" can only
occur in a Remote_Type package
(Annex E), so we don't test that here.
Uses change of AI05-0035.

Check that the elaboration of a pure unit cannot elaborate a
non-derived named access-to-variable type whose
storage_size is not specified to be zero.

B-Test. Careful: derived access types
are always OK. Try cases with the
category specified by either pragma or
aspect.

Check that the elaboration of a pure unit can elaborate a
named access-to-variable type whose storage_size is
specified to be zero.

C-Test. Try cases with the category
specified by either pragma or aspect.

Check that the elaboration of a pure unit cannot elaborate a
non-derived named access-to-constant type whose
storage_size is specified to be nonzero

B-Test. Careful: derived access types
are always OK. Try cases with the
category specified by either pragma or
aspect.

Check that the elaboration of a pure unit can elaborate a
named access-to-constant type whose storage_size is
specified to be zero or is not specified at all.

C-Test. Try cases with the category
specified by either pragma or aspect.

Check that the elaboration of any pure generic body cannot
elaborate a variable declaration or allocator for an access-to-
variable type.

B-Test. Check bodies and subunits of a
generic unit. Separate test as it comes
from an AI. Try cases with the category
specified by either pragma or aspect.

Check that the elaboration of any pure generic unit cannot
elaborate a named access-to-object type with a specified
nonzero storage size, or an access-to-variable without a
specified storage size.

B-Test. Try cases with the category
specified by either pragma or aspect.

5

5

(15.7/2) StaticSem 6

(16) Deleted

(17/3) 1 Definitions Subpart

2 Subpart Added from AI05-0034. Tested below.

3 4 B-Test.

4 C-Test.

4 Check that a pure package can have a impure child unit. C-Test.

4 A consequence of AI05-0034-1. 7 C-Test. Use a limited with, of course.

5

Negative BA21003 3 B-Test (Try on subunits, package spec).

5 Subpart

6 8

6

4

Check that the elaboration of any pure generic body cannot
evaluate a constant declaration for a formal private type or
private extension, even if that type has preelaborable
initialization.

B-Test. Try cases with the category
specified by either pragma or aspect.

Check that the Storage_Size of an anonymous access-to-
variable type declared at library-level of a generic pure body is
zero.

B-Test. Be sure to check uses through
an (impure) instance. Try cases with the
category specified by either pragma or
aspect.

Number changed by AI05-0035;
originally was (15.6/2)

Check that the Storage_Size of an anonymous access-to-
variable type declared at library-level of a pure unit is zero.

B-Test. This cannot be tested directly;
check that an allocator in a subprogram
is illegal for a library-level record type
with an anon access component. Check
uses in other impure units as well as the
pure unit.

All other pure unit tests check this.
AI05-0243-1 makes this optionally an
aspect.

We should try some cases where the
category is specified by an aspect. But
we'll try only a few such cases as the
pragma is preferred. See above.

Check that package subunits of a pure package enforce the
restrictions on pure units.

AI05-0035 makes this consistent with
preelaborate.

Check that package subunits of a preelaborated subprogram
do not enforce the restrictions on preelaborated units.

Check that a pure unit can have a semantic dependence on
the limited view of a pure unit.

Check that a pure unit can have a semantic dependence on
the limited view of a non-pure unit.

C-Test. Try a Preelaborated package
and a non-categorized package. This
probably can't be usage-oriented.

Check that a pure unit cannot have a semantic dependence
on a non-pure unit.

Generic boilerplate; tested as part of
other rules.

Check that the full view of any nonlimited partial view declared
in the visible part of a pure package is illegal if it does not
support external streaming.

B-Test. Check when the type has
named access components without
attributes, anonymous access
components, adds such components via
an extension, etc.

Check that the full view of any limited partial view declared in
the visible part of a pure package which is extended from a
type with available stream attributes is illegal if it does not
support external streaming.

B-Test. The full type should add an
access component, and not redefine the
attributes.

AI05-0035 requires rechecking of the
entire instance spec.

Check that a pure package instance cannot contain a variable
or named access type with a non-zero storage_size.

B-Test. This checks that rechecking of
the instance is performed. Separate test
as it comes from an AI.

(17.1/4) Erroneous

(18/3) Impl-Perm

(19) Syntax

(20) Syntax

(21) Syntax

(22) Syntax

(23) Legality 4

(24) Definitions

(25/3) Legality B720001 5

5

(25.1/2) Legality 7

(26/3) Redundant

(26.1/3) 1 Definitions

2 Redundant

(27) NonNormative A note.

(28) NonNormative Another note.

Not
Testable

Erroneous execution is never testable.
AI12-0076-1 restored this just in the
case of Pure packages; AI05-0054-2
removed this erroneousness in some
cases, but that caused problems for
distribution (Annex E).

Not
Testable

We could try to see whether side-
effects occur in such cases, but as
either possibility is allowed, that has no
value. We could try to test cases where
this permission doesn't apply to ensure
that side-effects happen, but that's not
of much value, as it would be hard to
guess when a compiler would do this
wrong and there are many possibilities.
AI05-0219-1 clarifies the wording, but
has no effect on testability.

Check that a pragma Elaborate or Elaborate_All cannot be
given outside of a context clause.

B-Test. Marked as untested in ACATS
2.x. Try placing the pragmas inside a
package spec, in a generic formal part,
and as a compilation unit.

Illegal cases of library unit pragma
rules are tested in 10.1.5.

Check that if a pragma Elaborate_Body applies to a library
package, a body must be given.

L-Test. The B-Test checks that it can be
given, we also need to check that a
program cannot link if it is omitted.

Aspect Elaborate_Body is added by
AI05-0229-1.

Check that if aspect Elaborate_Body is True for a library
package, a body must be given.

L-Test. We need to check that a
partition cannot link if there is no body in
this case.

Check that the unit in a pragma Elaborate or Elaborate_Body
cannot denote a limited view.

B-Test. Check various names only
mentioned in limited with clauses. Note
that this can't happen for aspect
Elaborate_Body.

AI05-0229-1 puts the last sentence into
the next paragraph.

Paragraph added by AI05-0229-1. Not
testable by itself, but implicitly tested by
any other pragma Elaborate_Body test.

Paragraphs: Objectives with tests: Total objectives:

10 225 135 168 256 2

Must be tested Objectives with Priority 10 0

Objectives with Priority 9 0

Important to test Objectives with Priority 8 3

Objectives with Priority 7 8

Valuable to test Objectives with Priority 6 18

Objectives with Priority 5 32

Ought to be tested Objectives with Priority 4 43

Objectives with Priority 3 30

Worth testing Objectives with Priority 2 25

Not worth testing Objectives with Priority 1 9

Total: 168

41

 Completely: 32

Objectives
to test:

Objectives with
submitted tests:

Objectives covered by new
tests since ACATS 2.6

	Objectives

